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ABSTRACT
In the well-known Bag-of-Words model, local features, such
as the SIFT descriptor, are extracted and quantized into
visual words. Then, an index is created to reduce computa-
tional burden. However, local clues serve as low-level rep-
resentations that can not represent high-level semantic con-
cepts. Recently, the success of deep features extracted from
convolutional neural networks(CNN) has shown promising
results toward bridging the semantic gap. Inspired by this,
we attempt to introduce deep features into inverted index
based image retrieval and thus propose the DeepIndex frame-
work. Moreover, considering the compensation of different
deep features, we incorporate multiple deep features from
different fully connected layers, resulting in the multiple
DeepIndex. We find the optimal integration of one mid-
level deep feature and one high-level deep feature, from two
different CNN architectures separately. This can be treat-
ed as an attempt to further reduce the semantic gap. Ex-
tensive experiments on three benchmark datasets demon-
strate that, the proposed DeepIndex method is competi-
tive with the state-of-the-art on Holidays(85.65% mAP),
Paris(81.24% mAP), and UKB(3.76 score). In addition, our
method is efficient in terms of both memory and time cost.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing; I.4.7 [Image Processing and Com-
puter Vision]: Feature Measurement

General Terms
Algorithm, Experimentation, Performance

Keywords
Image Retrieval, Convolutional Neural Networks, Bag of
Deep Features, DeepIndex
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1. INTRODUCTION
Image retrieval is one of the most significant and popu-

lar research tasks in the multimedia community[18, 22], and
aims to quickly search for the similar images through their
visual features. Bag-of-Words(BoW) is the most efficient
model in existing state-of-the-art image retrieval systems,
in which local features, such as the SIFT[19], and the col-
or clues[32], are extracted and quantized to visual words
with a pretrained codebook. Then, similar to document
retrieval[27, 22], an inverted index is built to reduce compu-
tational costs and memory requirements for scalable image
search. Recently, Zheng,et al.,[35] performed low-level fea-
ture fusion with the SIFT and color features using a coupled
inverted index level. However, image retrieval remains one
of the most challenging problems, which is mainly due to
the well-known“semantic gap”challenge that exists between
low-level image representations and high-level semantic con-
cepts perceived by human.

Machine learning is treated as one promising technique
that attempts to address this grand challenge. Recently,
one important technique, called deep learning, has shown
significant promise in computer vision and speech recogni-
tion. In deep learning, there are a family of machine learning
algorithms that extract high-level abstractions in data by
employing deep architectures composed of multiple neural
layers[5]. An important model in deep learning is convo-
lutional neural networks(CNN)[7], which has achieved top
rankings in many international benchmarks for computer
vision applications, such as image classification[16, 29] and
object detection[9]. Also, many works[31, 4, 24, 6] have
started to employ this kind of deep features for image re-
trieval and aim to evaluate how much retrieval improvement
can be achieved by developing the deep learning techniques,
and whether deep features are a desirable key to bridge the
semantic gap in the long term[31].

Inspired by these successes and attempts, we propose a
novel DeepIndex framework that explores deep features for
accurate and efficient image retrieval based on the BoW
model and inverted index. Firstly, we use the Bag-of-Deep-
Features(BDF) model that clusters visual words directly
with deep features. The spatial pyramid method is used
to partition the image into many patches. Then every patch
is equally input to extract activations from the fully connect-
ed(fc) layers in one pretrained CNN model, denoted as deep
features. All the feature patches of the image dataset are
clustered for the ‘deep’ codebook. In this work, we extract
deep features with two widely-used pretrained CNN models
that are Alexnet[16] and VGGnet[26]. Based on the different



number of neural layers, we categorize them as ‘low’ CNN
and ‘high’ CNN, respectively. Secondly, different from oth-
er works based on CNN that use resource-consuming image
matching and nearest neighbor search for retrieving images,
our work, called DeepIndex(DPI), introduces an efficient in-
verted index as a search strategy for deep features, which can
achieve promising performance while significantly reducing
the computational cost and memory space. Thirdly, we use
multiple deep features to narrow the semantic gap between
mid-level and high-level features. Here, we integrate multi-
ple fc layers, and then build a multiple DeepIndex(multi-
DPI) structure. Specifically, The 2-D DeepIndex is per-
formed in this paper consisting of two kinds of variants:
intra-CNN and inter-CNN. The former one uses two fc lay-
ers from the same CNN architecture, such as Alexnet. In
contrast, the latter one selects two fc layers from two differ-
ent CNN architectures, such as Alexnet and VGGnet. It is
found that the performance of inter-CNN is better than that
of intra-CNN. There are two reasons to explain it. First, it
is due to the close relationship of two fc layers from the same
CNN model that can not fully develop the advantage of the
2-D inverted index. The second reason is that, for inter-
CNN, we select one fc layer in Alexnet, and one fc layer in
VGGnet. Alexnet is a kind of ‘low’ CNN(eight layers), so
its fc feature can be treated as some kind of mid-level repre-
sentation. However, VGGnet belongs to a kind of ‘high’ C-
NN with nineteen layers, and thus its fc feature corresponds
closer to a high-level representation. Owing to the mutual
compensation of mid-level and high-level features in inter-
CNN, it obtains better results and bridges the semantic gap
with feature fusion at the 2-D inverted index level. However,
it is noteworthy that intra-CNN is simpler and faster than
inter-CNN. Finally, a special signature for the global image,
called global image signature(GIS), is integrated into DPI
which enhances the matching precision.
Finally, experimental results demonstrate the advantages

of DeepIndex, and the necessity and efficiency of multiple
DeepIndex. In several well known, public datasets, our com-
parisons with the state-of-the-art clearly validate these ad-
vantages. The contributions of this paper can be summa-
rized as follows:

• We introduce the DeepIndex framework that uses the
inverted index scheme for deep features(this is the first
to the best of our knowledge).

• We propose to use multiple deep features with the mul-
tiple DeepIndex which improves retrieval accuracy. It
consists of two variants: intra-CNN and inter-CNN.

• We further employ the deep feature of the whole image
as a signature for improving matching accuracy, which
is called the global image signature.

The rest of this paper is organized as follows. Related
works are briefly introduced in Section 2. Section 3 describes
the bag-of-deep-features scheme. The DeepIndex framework
is introduced in Section 4. The experimental results are
summarized in Section 5. Finally, Section 6 summarizes the
conclusions.

2. RELATED WORK
In this section, we will briefly discuss related works as well

as emphasize our differences with them.

Level 1 Level 2 Level 3

P1

P6 P7 P8

P9 P10 P11

P12 P13 P14

P2 P3

P4 P5

Figure 1: Spatial pyramid with three levels, and
there are 14 different patches Pi in total, where
i = 1, . . . , 14.

In Gong,et al.[10], they proposed to extract patches at
multiple scales, and then aggregated local patch respons-
es at the finer scales via VLAD[14] encoding. In Raza-
vian,et al.[24], their system first augmented the training set
by adding cropped and rotated samples. Then for each im-
age, it used crude search to extract multiple sub-patches of
different sizes at different locations. Each sub-patch was
computed for its CNN representation. The work of Wan,
et al.[31] revealed that a deep CNN model pre-trained on
a large dataset can be directly used for feature extraction
in new CBIR tasks. When being applied for feature repre-
sentation in new domain, it is found that similarity learning
can further boost the retrieval performance. Another work
by Sun, et al.[28] extracted object-like image patches with a
general object detector. Then one CNN feature is extracted
in each object patch. Without sliding windows or multiple-
scales patches in Babenko,et al.[4], they focused on holistic
descriptors where the whole image is mapped to a single
feature vector. Recently, in Zhang,et al.[34], they proposed
deep embedding that used deep feature as global and re-
gional signatures instead of a Hamming embedding[11]. In
fact, it belongs to an incorporation of the SIFT descriptor
and CNN feature, and achieves desirable results. All these
works only choose one fully connected feature, either the
first or the second one. In Agrawal, et al.[1], they analyzed
and compared the differences and discriminative abilities of
different layers.

In contrast to the prior works, our work focuses on both
search strategy and feature fusion at the indexing level. We
directly cluster visual words with deep features and then in-
troduce the DeepIndex scheme as the search strategy. Fur-
thermore, we propose building the multiple DeepIndex to
utilize multiple deep features which can compensate each
other mutually toward improving the retrieval precision.

3. BAG OF DEEP FEATURES
Many state-of-the-arts image retrieval methods employ

the low-level features, such as SIFT and color descriptors,
and rely on the Bag-of-Features(BoF) or Bag-of-Words(BoW)
model. However, few works have shown the usage of deep
features into BoF. In this section, we use the Bag-of-Deep-
Features(BDF) model, in which visual deep-words are clus-
tered directly on CNN features.

3.1 Spatial Patches
Generally, extracting the only feature vector from the w-

hole image is not discriminative enough for image retrieval
tasks, and loses relatively useful information, such as contex-
tual and spatial information. Thus it is quite important and
necessary to consider features within finer scales. Generally,
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Figure 2: Visualizing the deep features for three
groups of images from Holidays. One image from
each group is shown in the right side, and the color
of outer frame corresponds to the color of points in
the 3D space. Best viewed in color.

there are many kinds of methods enlarging the number of
features in one image, including “sliding windows”, “region
proposals”, and “spatial pyramid”.
Firstly, sliding windows is a quite common approach in

object recognition and object detection that scans an image
using windows of different scales, locations, and aspect ra-
tios. For example, Gong, et al.[10], scanned the whole image
with two levels of overlapping windows that generates nu-
merous local patches. Secondly, the region proposals method
is proposed to detect the objects of interest in images using
fewer candidates than sliding windows. For object detection,
RCNN[9] adopts this kind of selective search into CNN re-
placing sliding windows. In Sun, et al.[28], they also extract
CNN features only on object-like image patches with a re-
gion proposal detector. Thirdly, in contrast to the above two
methods, the spatial pyramid model[17] is an efficient way
to preserve the spatial information. In Razavian, et al.[24],
they first augment the datasets by cropping and rotating
images in several directions, and then use spatial search to
divide the whole image into different levels of patches whose
union covers the whole image.
Comparison with three methods mentioned above, we em-

ploy the spatial pyramid to refine the image representation
because of its simplicity and efficiency. As seen in Fig. 1 ,
we partition one image into three levels: Level 1 only con-
tains a patch P1 that is the whole image; Level 2 separates
the image into four patches(P1, P2, P3, P4)whose union cov-
ers the whole image; Level 3 consists of nine non-overlapping
patches, from P5 to P14. In total, there are 14 patches for
one image, and their features are computed independently.
In contrast to methods[24] which uses larger levels for train-
ing images than query images, we apply the same spatial
levels for all images. Furthermore, we do not perform prior
data augmentation, such as crops and rotations.

3.2 Feature Extraction and Quantization
The success of convolutional neural networks used in im-

age classification[16] has shown the strong efficiency and dis-
crimination of learning features by layer-wise architecture.
Also, several works[9, 31] suggest that the features located
in the upper layers of CNN can serve as good descriptors for
various image applications.
It is common to prefer to use the fully connected layers

for feature representations[8, 24], because of their closer to
class posteriors, but there are also differences about which
fc layer is favorable[1].
Different from these works using either the first or the

second fully connected activations, we focus on how to in-

corporate multiple fully connected features. In this work,
we employ two commonly CNN architectures pretrained on
ILSVRC[25] as feature extractors. The one is proposed by
Krizhevsky[16] in 2012 and implemented by the Caffe frame-
work[15]. The other one is from Simonyan[26] in 2014 and re-
leased in the MatConvNet[26] framework. We refer to them
as Alexnet and VGGnet respectively. In Alexnet, there are
eight ordered layers(5 convolutional layers, 3 fully connected
layers), thus we name the first and second fc layers as fc6
and fc7. Note that VGGnet has various configurations, and
we choose to use the one with nineteen weight layers (16
convolutional layers, 3 fully connected layers), and the first
and second fc layers are codenamed as fc17 and fc18.

To visually demonstrate the discrimination of deep fea-
tures, we select three groups of images from the Holidays
dataset[11]. The fc18 features for patches of these images are
computed and mapped into a 3D space by classical Multi-
Dimensional Scaling1. As seen in Fig. 2, the degrees of
separations of data points from three groups are promising.

The feature extraction and quantization is conducted as
in Fig. 3. Given an image I, xi represents the feature vec-
tor of the ith patch, where i = 1, . . . , 14. After extracting
features of all image patches, we perform feature quanti-
zation to map deep features into visual deep-words. With
the codebook clustered on the training dataset using the
k-means algorithm, the quantization function q(·) maps a
patch feature xi to its nearest centroid vk in the codebook,
with q(xi) 7→ vk, where vk is the kth visual word. Note that
codebooks for different fc features, including fc6, fc7, fc17,
fc18, are trained independently. Typically, the dimension of
the fc feature is usually 4096, and L2 normalization is used
for these features.

4. DEEPINDEX
To reduce the computational time and memory, we pro-

pose the DeepIndex(DPI) framework in which the inverted
index is created based on visual deep-words. Afterwards, we
integrate multiple deep features with the multiple DeepIn-
dex. Finally, the global image signature is utilized to elevate
the matching accuracy.

4.1 Single DeepIndex
Although several works have exploited deep features for

image retrieval tasks, they typically focus on the usage of
deep features themselves and the retrieving algorithm they
use is simply nearest neighbor search performed by comput-
ing matching similarity among image(or patches). Our work
also improves the search strategy by using inverted index for
deep features.

We create an inverted index structure in which each en-
try corresponds to a visual deep-word defined in the pre-
computed codebook. Assume that there are a total of N
images in an image database, denoted as {Ii}Ni=1. Each im-

age Ii has a set of patches features {xj}
dj
j=1, where dj is the

number of patches. Given a codebook {vi}Ki=1 of size K, we
represent the inverted index as W = {W1,W2, . . . ,WK}. In
W, each entry Wi consists of a list of indexed items, such as
image ID, term-frequency(TF) score and other metadata[22,
13, 35].

Given a query deep feature, its corresponding entry Wi

is identified by feature quantization mapping. The indexed

1Here, we use the Matlab function ‘cmdscale’.



 

 

Figure 3: The flowchart of Single DeepIndex framework, including off-line and on-line stages. For example,
The pretrained Alexnet serves as the feature extractor and fc6 activations are obtained for features. Image
patches in different levels are shown in the same size.

items following entry Wi are counted as the candidate near-
est features of the query feature. Therefore, the matching
function hq(·) of two deep features x and y with mapping
function q(·) is computed as

hq(x, y) = δq(x),q(y), (1)

where δ is the Kronecker delta response. The voting score
is accelerated by all hq(x, y) values.
At this point, the matching function do not consider the

tf−idf scheme[27], which weights the visual words according
to their frequency. Generally, rare visual words are assumed
to be more discriminative and should be assigned higher
weights. In this case, the matching function can be updated
as

h(x, y) = δq(x),q(y) · idf(q(y))2, (2)

where idf(i) = N/ni, ni is the number of images containing
the visual word vi.
We call the proposed indexing scheme as single DeepIndex

(1-D DPI) because of using one kind of deep features. This
work consists of four kinds of 1-D DPI, which are presented
as DPI6,DPI7,DPI17, and DPI18. The whole procedure
of image search with BDF and 1-D DPI is illustrated in
Fig. 3. This figure takes the DPI6 method for example,
and it is also suitable for other deep features. There are
two stages: off-line stage and on-line stage. The former one
mainly cluster codebook with training patches, and generate
the DeepIndex structure. The latter stage is to query one
image by searching the inverted index and to return similar
images.

4.2 Multiple DeepIndex
Currently, most works mainly focus on comparing perfor-

mance of different fully connected layers, and only choose
the favorable one. However, different neural layers implying
different levels of abstracts for the input image demonstrate
distinct aspects. It is not preferable to take one layer as the
only representation for feature matching. Thus we utilize
different layers to compensate each other and to improve
the matching accuracy. Based on this idea, we propose to
integrate multiple fully connected layers with the multiple
DeepIndex(multi-DPI).
The structure of the multi-index was first proposed in

Babenko, et al.[3]. It decomposes the SIFT descriptor in-

to several blocks by product quantization. The multi-index
is thus organized around the codebooks of corresponding
blocks. Recently, Zheng, et al.[35], built the coupled multi-
index with traditional SIFT features and additional discrim-
inative color names. Their results demonstrate that the fea-
ture fusion at indexing level is better than the single in-
dexing. Motivated by these works, we aim to exploit incor-
poration of deep features by multi-DPI structure. In this
paper, we take the two dimensional DeepIndex(2-D DPI) as
an example.

Considering the 2-D DeepIndex, we denote X = [xr, xc]
as a coupled deep features for a patch Pi in Image I, where
xr is extracted from one fully connected layer as row index-
ing, and xc comes from another fc layer as column indexing.
Then, the row and column codebooks are generated with
training images separately, noted by U = u1, u2, . . . , uM and
V = v1, v2, . . . , vN , where M and N are codebook sizes. As
a result, this 2-D DPI structure contains M × N entries,
as W = W11,W12, . . . ,Wij , . . . ,WMN , i = 1, 2, . . . ,M, j =
1, 2, . . . , N .

After building the 2-D DPI, all feature tuples like X =
[xr, xc] are quantized into visual word pairs (ui, vj) using
codebooks U and V, where ui and vj are the nearest cen-
troids to features xr and xc, respectively. Then other use-
ful clues(e.g. image ID, and other metadata) related to the
current feature tuple X are saved in the corresponding entry
Wij , similar to the 1-D DeepIndex.

Now, assume two feature tuples X = [xr, xc] and Y =
[yr, yc], the matching function considering 2-D indexing is
rewritten as

h(X ,Y) = δqr(xr),qr(yr) · δqc(xc),qc(yc) · idf2, (3)

where qr(·) and qc(·) present quantization functions for two
different features in row and column spaces, and idf is the
2D extension of the 1D one in Eq.(2). Here, a right match is
valid only when the two features tuples are similar in both
two indexes. Thus, the 2-D DeepIndex enhances match-
ing strength and improve retrieval precision. Moreover, we
define two models about how to select fc features, named
intra-CNN and inter-CNN.

Intra-CNN model uses two fc layers from the same CNN
architecture. As the two black solid lines seen in Fig. 4, fc6
activation is taken as column indexing, and the fc7 activation



 

Figure 4: The framework of 2-D DeepIndex for deep features, including intra-CNN and inter-CNN. For
intra-CNN, it uses the fc6 and fc7 jointly. For inter-CNN, the fc7 and fc18 are incorporated for indexing.
Besides, global image signature serves as additional clue in indexed items, stored in a table.

mid level high level
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Gap

Figure 5: Comparison between the Intra-CNN and
the Inter-CNN.

serves as row indexing. In this work, there are two kinds of
Intra-CNN members, called DPI6,7 and DPI17,18.
Inter-CNN model chooses two fc layers coming from two

different CNN architectures. For example the two black dot
lines in Fig. 4, fc7 from Alexnet(‘low’ CNN) and fc18 from
VGGnet(‘high’ CNN) represent column and row indexing,
respectively. In total, there are four Inter-CNN members,
including DPI7,17,DPI6,17,DPI7,18, and DPI6,18.
We draw one more example for Intra-CNN and Inter-CNN

in Fig. 5. We categorize the fc6 and fc7 as mid-level fea-
tures, and fc17, fc18 as high-level features. The Intra-CNN is
relatively simple, but the importance and necessity of Inter-
CNN is its ability to bridge the gap between mid-level and
high-level features to some extent. More comparison and
analysis about the performance of intra-CNN and inter-CNN
is followed in the experiment of Sec. 5.3.

4.3 Global Image Signature
To further improve the matching accuracy in the inverted

index structure, we employ additional discriminative feature
to constrain the matching condition and to filter out false
matches, which is called the ‘signature’. The most popular
one is the hamming embedding signature[11] that uses a 64-
D binary signature for each SIFT descriptor, and stores it in
the metadata of the inverted items. In zheng,et al.[35], they
use the hamming embedding for SIFT features and generates
another signature for color names.
Recently, the global discrimination of deep feature has

been demonstrated in many works[24, 31, 1], in which on-
ly one fully connected feature vector(4096-D) extracted from
the whole image can achieve desirable results. In this paper,
we propose to use the deep feature for the whole images as
an additional signature for DeepIndex, called global image
signature(GIS). Although the spatial patches in Sec. 3.1 al-
ready consist of the global feature at Level1, the purpose of
spatial patches is to rich the representations of images and

exploit more features at object-level. Also, all the patch-
es features are clustered into visual words and quantized to
another space that are different from the original feature s-
pace. Thus, it is not a repeated process to use the global
feature again. Moreover, GIS is quite efficient, because al-
l the patches in one image share the same GIS. We store
all GIS features in a pre-computed table searched by the
indexed items, as seen in Fig. 4.

We compute the similarity of two GIS with the root fea-
ture process. Similar to prior work[2, 28], we obtain the root
feature by first L1 normalizing the feature vector and then
computing the square root per dimension. The distance is
computed with the Hellinger kernel S(x, y) =

∑m
i=1

2
√
xiyi.

The distance is counted as:

d(x, y) = 2− 2 · S(x, y),

Then we take GIS into DeepIndex, and add this distance
to update the matching score in Eq.(2). For 1-D DeepIn-
dex, given two patches features x and y, the final matching
function becomes:

h(x, y) = δq(x),q(y) · idf2 · c(x, y), (4)

where c(x, y) = exp(α · d(gis(x), gis(y))), gis(·) returns the
corresponding global image feature of the current patch, and
α measures the GIS matching strength. For 2-D DeepIndex,
there are two feature tuples X = [xr, xc] and Y = [yr, yc].
Finally, the 2-D matching function is rewritten as:

h(X ,Y) = δqr(xr),qr(yr) · δqc(xc),qc(yc) · idf2 · c(X ,Y), (5)

where c(X ,Y) = c(gis(xr), gis(yr))·c(gis(xc), gis(yc)). when
selecting different fc layers, gis(·) returns the corresponding
global deep feature for one image.

In this case, two patches are really matched only when
their visual deep-words are identical and their GIS features
are similar. Indeed, GIS is a kind of global constraint and
compensation for patches matching. A recent and similar
work[34] extracts features from the whole image and dif-
ferent levels of images patches as signatures, named deep
embedding, which becomes a strong constraint for inverted
index built on the SIFT features. Moreover, they try to con-
vert the feature into binary signatures. Different from them,
we directly build the visual words and DeepIndex based on
deep features and without using SIFT features, and we fur-
ther exploit multiple DeepIndex to enhance matching accu-
racy. In addition, we use less image patches(14) than that
of 81 patches in[34].
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Figure 6: Codebook sizes on three dataset. The selected sizes are 5000, 5000, 10000 on Holidays, Paris, UKB.

Table 1: Ratio between training features and code-
book size. Assume that each image has 500 SIFT
keypoints.

Dataset Training features Codebook size Ratio

Holidays 991× 14 5000 2.8
Paris 6337× 14 5000 17.7
UKB 10200× 14 10000 14.3

[35] for SIFT 60K × 500 20K 1500
[35] for color 60K × 500 200 150K

5. EXPERIMENTS
In this section,we evaluate the proposed method on three

public datasets: Holidays , Paris and UKB.

5.1 Datasets
Holidays[11] contains 1491 vacation photographs corre-

sponding to 500 groups. There are 500 queries, most of
which have 1-2 ground truth images which have been rec-
tified to a natural orientation. The performance is mea-
sured by mean average precision(mAP)[22] over the provid-
ed queries.
Paris[23] has 6412 images obtained from Flickr. 55 im-

ages serve as queries. For each image and landmark, one of
four possible labels is generated: good, ok, bad, and junk.
The mAP is again used as the accuracy measurement.
UKB[21] includes 10200 indoor photos of 2550 objects(4

images per object). Each image is used to query the rest
of the dataset in turn. The performance is reported by the
average recall of the top four results, referred to as N-S score
that is a number between 0 and 4. But some works still
measure this dataset with mAP.

5.2 Codebook Generation
In this paper, the visual words are clustered with the train-

ing images from every dataset itself. To elevate the efficien-
cy of k-means, we use the algorithm from Fast Library for
Approximate Nearest Neighbors(FLANN)[20]. We perform
four kinds of 1-D DeepIndex(fc6,fc7,fc17,fc18) to find desir-
able codebook sizes. The results are drawn in Fig. 6. Con-
sidering the accuracy and efficiency, we set codebook sizes
K = 5000, 5000, 10000 for Holidays, Paris, and UKB.
It is noteworthy that the codebook sizes of deep features

are smaller than traditional BoW with SIFT features. Also,
the ratios between training deep-features and codebook sizes
are relatively smaller. More details in Table 1, the ratios
in this paper is under 20, but the ratios in[35] that uses
coupled multi-index of SIFT and color features are quite
large with about 1500 and 150K. This demonstrates that
patches features has desirable discrimination, though there
are relatively less training descriptors and smaller clusters.
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Table 3: Results with PCA Compression
Datasets Holidays Paris UKB

Dim=4096 0.833 0.7824 3.68
Dim=2048 0.8411 0.7945 3.72
Dim=1024 0.8463 0.8065 3.74
Dim=512 0.8565 0.8124 3.76
Dim=256 0.8367 0.7875 3.71
Dim=128 0.8272 0.7724 3.65

5.3 Evaluation
In this experiment, we compare the performance of 1-D

DPI and 2-D DPI in Table 2. It is shown that the 2-D
method is not better than the 1-D method using the single
multiple assignment(MA=1), due to the low recall. To fur-
ther improve the recall, we use the multiple assignment(MA)
method[13], which improves the 2-D DPI performance.

Furthermore, the inter-CNNmethods are better than intra-
CNN ones. The reason is that deep features in intra-CNN
are from the same CNN architecture, such as fc6 and fc7, so
they have close relationship(fc6 is the input of fc7) restrain-
ing the ability of 2-D inverted index. Here we call the fc6 and
fc7 feature as ‘mid-level’ descriptions and the fc17 and fc18
features as ‘high-level’ descriptions because of their deeper
network. The result shows that the integration of ‘mid-level’
and ‘high-level’ features plays a role in improving the overall
representation which results in significant improvement com-
pared with 1-D DPI. Finally, DPI6,18 obtains 82.38% mAP
on Holidays; DPI7,18 has 75.35% mAP on Paris; DPI7,18
achieves 3.37 N-S score. In Fig. 8, we show two queries from
Holidays and UKB. It can be seen that the 2-D DPI method
returns more relevant images than 1-D DPI.

Next, we consider to evaluate the influence of global image
signature for 2-D DPI. We choose to test the superiority
results on each dataset, as listed in Table 2. The parameter
α in GIS ranges from 1 to 15 and the results are shown in Fig.
7. For Holidays, the GIS increases DPI6,18 to 83.3% mAP



Table 2: Results with 1-D DeepIndex and 2-D DeepIndex
Dataset Holidays Dataset Paris Dataset UKB Dataset
Methods MA=1 MA=3 MA=5 MA=1 MA=5 MA=10 MA=1 MA=5 MA=10

DPI6 0.7173 0.7354 0.7201 0.4094 0.5689 0.6521 2.90 3.03 3.02
DPI7 0.7234 0.7490 0.7358 0.4124 0.5745 0.6578 3.05 3.12 3.04
DPI17 0.7302 0.7322 0.7262 0.4487 0.6101 0.7024 3.16 3.19 3.15
DPI18 0.7631 0.7672 0.7563 0.4503 0.6123 0.7133 3.21 3.25 3.19
DPI6+7 0.7200 0.7888 0.7717 0.2935 0.6289 0.7120 3.02 3.13 3.05
DPI17+18 0.7575 0.7996 0.7934 0.3228 0.6329 0.7169 3.16 3.25 3.26
DPI7+17 0.7401 0.8053 0.8020 0.3345 0.6412 0.7324 3.21 3.25 3.19
DPI6+17 0.7332 0.8162 0.8115 0.3395 0.6508 0.7435 3.22 3.26 3.22
DPI7+18 0.7466 0.8123 0.8174 0.3656 0.6618 0.7535 3.26 3.37 3.32
DPI6+18 0.7382 0.8164 0.8238 0.3412 0.6540 0.7452 3.19 3.23 3.29

when α is 8. Similarly, the result of DPI7,18 for Paris arrives
at 78.24% mAP with α = 4. Also, The DPI7,18 method
gets 3.68 N-S score on UKB with α = 10. All these results
valid the necessity of GIS that provides a global constraint
to enhance the matching strength. Thus, all the following
results contain the GIS process.

5.4 Dimensionality reduction
To evaluate the influence of feature compression for deep

feature, we conduct PCA compression for the 4096-D deep
feature with different dimensions (The GIS is also com-
pressed by PCA). In Table 3, when the dimension is 512,
the results obtain most improvement on Holidays(+2.35%
mAP), Paris(+3% mAP), UKB(+0.08 score). Although the
dimension is down to 128, it can even obtain desirable re-
sults compared with many of SIFT-based methods. This
implies that PCA affects the performance of deep features
less than the ones of SIFT-like methods.

5.5 Comparison with the state-of-the-art
We compare our results with the state-of-the-art methods

that are simply divided into three groups: CNN method-
s, Non-CNN methods and SIFT-CNN methods. Note that
we do not consider and perform various post-processing al-
gorithms, such as query expansion, spatial verification, and
graph fusion. For CNN methods, we also do not conduct
fine-tuning for specific tasks in this work. Thus we com-
pare the results in other methods that exclude the post-
processing and fine-tuning stages.
The whole comparison is listed in Table 4. For Holi-

days, the proposed method(85.56%) exceeds other CNN-
based methods, and is competitive to the best results[30]
and[34]. In the work by Tolias, et al.[30], their representa-
tion would take about millions of features per image which is
not scalable to large datasets. In Zhang,et al.[34], they use
both SIFT and CNN features to improve matching preci-
sion. For Paris, our result(81.24%) outperforms most other
methods, except the recent work that introduces the sim-
ilarity learning algorithm into deep learning[31]. In UKB,
the proposed method(score 3.76) is better than the coupled
multiindex method[35], and is competitive to the state-of-
the-art approaches[34].

5.6 Complexity analysis
To quantize the efficiency, we compare the computing

complexity of the DeepIndex with the state-of-the-art[34]
on Holidays, as listed in Table 5. Our experimental environ-
ment is CPU i7 at 2.67Ghz with 12GB RAM and NVIDIA
Titan Black with 6GB GRAM. Assume that every images

Table 4: Comparison results with the state-of-the-
art on three datasets. * means the improved results
in the papers.

Groups Methods Holidays Paris UKB

CNN [4] 74.70 - 3.43
CNN [28] 79.00 - 3.61
CNN [10] 80.20 - -
CNN [24] 84.30 79.50 -(91.1)
CNN [31] - 86.83 -
CNN Ours 85.65 81.24 3.76

Non-CNN [32] 78.90 - 3.50
Non-CNN [33] 80.86 - 3.60
Non-CNN [13] 81.30 - 3.42(87.8)
Non-CNN [30] 82.20 78.20 -
Non-CNN [12] 83.90 - 3.54(90.7)
Non-CNN [35] 84.02 - 3.71(94.7)
Non-CNN [30]∗ 88.00 80.50 -

SIFT-CNN [34] 85.30 - 3.79
SIFT-CNN [34]∗ 88.08 - 3.85

Table 5: Memory cost (bytes) and query time (sec-
onds) for one image on Holidays dataset

Methods [34] 1-D DPI 2-D DPI

ImageID 4× 500 4× 14 4× 14
Signature 10.18KB 512× 4 512× 4× 2

Total Memory 12.13KB 2.06KB 4.06KB

Query Time 2.32 0.25 0.45

has 500 SIFT keypoints. Considering the memory cost per
image, both 1-D DPI(2.06KB) and 2-D DPI(4.06KB) are
lower than [34], which needs to spend extra memory for nu-
merous SIFT features. In addition, due to the smaller code-
book size, the average query time of our approach is shorter
with less than 0.5 seconds 2. This shows the efficiency and
feasibility of our method.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed the DeepIndex framework for

accurate and efficient image retrieval that introduced the
inverted index into deep features. Moreover, we integrated
multiple deep features with the multiple DeepIndex which
attempted to bridge the gap between mid-level and high-
level representations. Experimental results showed that our
method achieved competitive performance in the well-known
and frequently benchmarked Holidays, Paris, UKB datasets.

2Our query time does not include the feature extraction.
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Figure 8: Retrieval results in Holidays and UKB
datasets. The left image with blue frame is query
one, and the images with green frame are right re-
sults. Best viewed in color.

In the future, we think it is promising to investigate the
possibilities of using posting-processing or finetuning stage
within the DeepIndex approach. Codes and pre-computed
data are released on our website3.
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local descriptors into a compact image representation. In
CVPR, 2010.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell. Caffe:
Convolutional Architecture for Fast Feature Embedding. In
ACM Multimedia, 2014.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
NIPS, 2012.

[17] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories. In CVPR, 2006.

[18] M. S. Lew, N. Sebe, C. Djeraba, and R. Jain.
Content-based multimedia information retrieval: State of
the art and challenges. TOMCCAP, 2(1):1–19, 2006.

[19] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2):91–110, 2004.

[20] M. Muja and D. G. Lowe. Fast approximate nearest
neighbors with automatic algorithm configuration. In
International Conference on Computer Vision Theory and
Application, 2009.

[21] D. Nister and H. Stewenius. Scalable recognition with a
vocabulary tree. In CVPR, 2006.

[22] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.
Object retrieval with large vocabularies and fast spatial
matching. In CVPR, 2007.

[23] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman.
Lost in quantization: Improving particular object retrieval
in large scale image databases. In CVPR, 2008.

[24] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson.
CNN features off-the-shelf: an astounding baseline for
recognition. In CVPR, DeepVision workshop, 2014.

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. arXiv:1409.0575, 2014.

[26] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[27] J. Sivic and A. Zisserman. Video Google: A text retrieval
approach to object matching in videos. In ICCV, 2003.

[28] S. Sun, W. Zhou, H. Li, and Q. Tian. Search by detection:
Object-level feature for image retrieval. In ICIMCS, 2014.

[29] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. CoRR, abs/1409.4842,
2014.

[30] G. Tolias, Y. Avrithis, and H. Jégou. To aggregate or not
to aggregate: selective match kernels for image search. In
ICCV, 2013.

[31] J. Wan, D. Wang, S. C. H. Hoi, P. Wu, J. Zhu, Y. Zhang,
and J. Li. Deep learning for content-based image retrieval:
A comprehensive study. In ACM Multimedia, 2014.

[32] C. Wengert, M. Douze, and H. Jégou. Bag-of-colors for
improved image search. In ACM Multimedia, 2011.

[33] M. Yang, X. Wang, Y. Lin, and Q. Tian. Semantic-aware
co-indexing for near-duplicate image retrieval. In ICCV,
2014.

[34] L. Zheng, S. Wang, F. He, and Q. Tian. Seeing the big
picture: Deep embedding with contextual evidences. CoRR,
abs/1406.0132, 2014.

[35] L. Zheng, S. Wang, Z. Liu, and Q. Tian. Packing and
padding: Coupled multi-index for accurate image retrieval.
In CVPR, 2014.


