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Abstract

The use of salient points in content-based retrieval allows an image index to represent local properties of the image.

Classic corner detectors can also be used for this purpose but they have drawbacks when are applied to various natural

images mainly because visual features do not need to be corners and corners may gather in small regions. In this paper,

we present a salient point detector using wavelet transform and we compare it with two corner detectors using two

criteria: repeatability rate and information content. We determine which detector gives the best results and show that it

satisfies the criteria well.

� 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many computer vision tasks rely on low level

features. A wide variety of feature detectors exist

and results can vary enormously depending on the

detector used. An image is ‘‘summarized’’ by a set

of features, the image index, to allow fast query-

ing. Local features are of interest since they lead

to an index based on local properties of the image.

The feature extraction is limited to a subset of the
image pixels, the interest points, where the image

information is supposed to be the most important

(Schmid and Mohr, 1997; Sebe et al., 2000). Be-

sides saving time in the indexing process, these

points may lead to a more discriminant index be-
cause they are related to the visually most impor-

tant parts of the image.

Haralick and Shapiro (1993) consider a point in

an image interesting if it has two main properties:

distinctiveness and invariance. This means that a

point should be distinguishable from its immediate

neighbors and the position as well as the selection

of the interesting point should be invariant with
respect to the expected geometric and radiometric

distortions.

Schmid and Mohr (1997) proposed the use of

corners as interest points in image retrieval using

the Harris corner detector (Harris and Stephens,

1988). The basic idea is to use the auto-correlation

function in order to determine locations where the

signal changes in two directions. A matrix related
to the auto-correlation function which takes into
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account the first derivatives of the signal on a

window is computed. The eigenvectors of this

matrix are the principal curvatures of the auto-

correlation function. Two significant values indi-

cate the presence of an interest point.

Different interest point detectors are evaluated
and compared in (Schmid et al., 2000). Besides the

Harris corner detector and an improved variant of

it called PreciseHarris, the authors also consider

the detectors proposed by Heitger et al. (1992),

F€oorstner (1994), and Horaud et al. (1990). Heitger

et al. (1992) developed an approach inspired by

experiments on the biological visual system. They

extract 1D directional characteristics by convolv-
ing the image with orientation-selective Gabor

filters. In order to obtain 2D characteristics, they

compute the first and second derivatives of the

1D characteristics. F€oorstner (1994) classifies image

pixels into categories––region, contour, and inter-

est point––by using the auto-correlation function.

Local statistics allow a blind estimate of signal-

dependent noise variation and thus an automatic
selection of thresholds. Horaud et al. (1990) ex-

tract line segments from the image contours. These

segments are grouped and the intersections of

grouped line segments are the interest points. The

authors (Schmid et al., 2000) concluded that the

best results are provided by the Harris detector

(Harris and Stephens, 1988). Zheng et al. (1999)

proposed a method derived from the Harris de-
tector (in their paper they call it Plessey corner

detector). The most important improvement of

their corner detector is that it decreases the com-

plexity (instead of calculating the Gaussians they

calculate smoothed gradient-multiple images).

They conclude that the performance of their gra-

dient-direction corner detection is slightly inferior

to that of the Harris detector but the performance
of localization (defined as the closeness to the true

location of the corner) is better than that of the

Harris detector.

Corner detectors, however, were designated for

robotics and shape recognition and they have

drawbacks when are applied to natural images.

Visual focus points do not need to be corners:

when looking at a picture, we are attracted by
some parts of the image, which are the most

meaningful for us. We cannot assume them to be

located only in corner points, as is mathematically

defined in most corner detectors. For instance, a

smoothed edge may have visual focus points and

they are usually not detected by a corner detector.

The image index we want to compute should de-

scribe them as well. Corners also gather in textured
regions. The problem is that due to efficiency rea-

sons only a preset number of points per image can

be used in the indexing process. Since in this case

most of the detected points will be in a small

region, the other parts of the image may not be

described in the index at all. However, we do not

want to have points in all possible regions: regions

where there is nothing interesting (e.g., a region
with a constant grey level) should not contain any

‘‘interesting’’ points.

We believe that other points based on image

information can be extracted using approaches

other than the corner differential framework.

Studies on visual attention, more related to human

vision, propose different models. The basic infor-

mation is still the variation in the stimuli. How-
ever, this is not longer taken into account in a

differential way but mainly from an energy point

of view (Itti et al., 1998). Another approach is to

integrate a scale space approach into the corner

extraction algorithm (Lindeberg, 1998; Mikola-

jczyk and Schmid, 2001). The idea is to select a

characteristic scale by searching for local extreme

over scales.
In this context, we aim for a set of interesting

points called salient points that are related to any

visual interesting part of the image whether it is

smoothed or corner-like. Moreover, to describe

different parts of the image the set of salient points

should not be clustered in few regions. We be-

lieve multiresolution representation is interesting

to detect salient points. Multiresolution represen-
tations are usually implemented using image pyra-

mids. This representation has various properties

that makes it very popular in image processing and

computer vision algorithms: (1) the adaptation of

resolution is suitable for coarse-to-fine multigrid

iteration strategies; (2) iterative algorithms that

proceed by successive refinements usually require

less computations and have faster convergence;
(3) in the context of iterative algorithms, the

smoothing effect of the pyramid reduces the
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likelihood of getting trapped in local extrema,

which increases robustness; and (4) analogies can

be made with the hierarchical organization of the

human primary visual cortex. One of the earliest

example of a pyramid is due to Burt and Adelson

(1986). Their Gaussian filtering, however, pro-
duces excessive smoothing which leads to some

loss of image details. Higher-quality image reduc-

tion can be obtained by designing a filter that is

optimum in the least-squares sense (Unser, 1992)

or by using the lowpass branch of a wavelet de-

composition algorithm (Mallat, 1989).

Taking these into account, we present a salient

point extraction algorithm that uses the wave-
let transform, which expresses image variations

at different resolutions. Our wavelet-based salient

points are detected for smoothed edges and are not

gathered in texture regions. Hence, they lead to a

more complete image representation than corner

detectors. The algorithm presented in this paper is

an improved version of our algorithm presented

in Loupias et al. (2000), Tian et al. (2001), and
Loupias and Bres (2001). There we were interested

in using the salient points in a content-based re-

trieval scenario and we showed that extracting

color and texture features in the location given by

the salient points provided significantly improved

results in terms of retrieval accuracy, computa-

tional complexity, and storage space of feature

vectors as compared to global features ap-
proaches. In a content-based retrieval application

the geometric stability of the salient points is not

really critical. There, the features stability is more

important since image matching is done at feature

level. For example, even if a salient point moves

along an edge, the matching does not change as

long as the feature extracted in that point remains

stable. However, if we want to use the salient
points in other applications, such as object track-

ing and recognition or stereo matching, the geo-

metrical stability becomes really critical.

In order to evaluate the ‘‘interestingness’’ of the

points (as was introduced by Haralick and Shapiro

(1993)) two criteria are considered: repeatability

rate and information content. The repeatability

rate evaluates the geometric stability of points
under different image transformation. Information

content measures the distinctiveness of greylevel

pattern at an interest point. A local pattern is de-

scribed using rotationally invariant combinations

of derivatives. The entropy of these invariants is

measured for a set of interest points.

2. Wavelet-based salient points

The wavelet representation gives information

about the variations in the image at different

scales. We would like to extract salient points from

any part of the image where something happens at

any resolution. A high wavelet coefficient (in ab-

solute value) at a coarse resolution corresponds to
a region with high global variations. The idea is to

find a relevant point to represent this global vari-

ation by looking at wavelet coefficients at finer

resolutions.

A wavelet is an oscillating and attenuated

function with zero integral. We study the image f

at the scales (or resolutions) 1=2; 1=4; . . . ; 2j, j 2 Z
and j6 � 1. The wavelet detail image W2j f is ob-
tained as the convolution of the image with the

wavelet function dilated at different scales. We

consider orthogonal wavelets with compact sup-

port. First, this assures that we have a complete

and non-redundant representation of the image.

Second, we know from which signal points each

wavelet coefficient at the scale 2j was computed.

We can further study the wavelet coefficients for
the same points at the finer scale 2jþ1. There is a set

of coefficients at the scale 2jþ1 computed with

the same points as a coefficient W2j f ðnÞ at the scale
2j. We call this set of coefficients the children

CðW2j f ðnÞÞ of the coefficient W2j f ðnÞ. The children
set in one dimension is:

CðW2j f ðnÞÞ ¼ fW2jþ1f ðkÞ; 2n6 k6 2nþ 2p � 1g
ð1Þ

where p is the wavelet regularity and 06 n < 2jN
with N the length of the signal.

Each wavelet coefficient W2j f ðnÞ is computed

with 2�jp signal points. It represents their variation
at the scale 2j. Its children coefficients give the

variations of some particular subsets of these

points (with the number of subsets depending on

the wavelet). The most salient subset is the one with
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the highest wavelet coefficient at the scale 2jþ1, that

is the maximum in absolute value of CðW2j f ðnÞÞ. In
our salient point extraction algorithm (Loupias

and Bres, 2001), we consider this maximum, and

look at his highest child. Applying recursively this

process, we select a coefficient W2�1f ðnÞ at the finer
resolution 1=2. Hence, this coefficient represents

2p signal points. To select a salient point from

this tracking, we choose among these 2p points

the one with the highest gradient (Fig. 1). We set

its saliency value as the sum of the absolute value

of the wavelet coefficients in the track:

saliency ¼
X�j

k¼1

jCðkÞðW2j f ðnÞÞj;� log2 N 6 j6 � 1

ð2Þ

The tracked point and its saliency value are

computed for every wavelet coefficient. A point

related to a global variation has a high saliency

value, since the coarse wavelet coefficients con-

tribute to it. A finer variation also leads to an

extracted point, but with a lower saliency value.

We then need to threshold the saliency value, in

relation to the desired number of salient points.
We first obtain the points related to global varia-

tions; local variations also appear if enough salient

points are requested.

The tracking using the highest gradient works

well only if one of the 2p points clearly has a much

higher gradient compared to the other points.

However, if two or more points will have close

gradient values the tracking using only the maxi-
mum may contribute to geometrical instability of

the extracted salient point due to the presence of

noise. Consider that there are m points out of the

possible 2p points which have the gradient very

close to the maximum gradient. In this case, in

order to enhance the robustness to noise of the

salient point extraction algorithm, we trace all the

m points. In the end, we select the tracking branch
that provides maximum saliency according to the

Eq. (2).

The salient points extracted by this process

depend on the wavelet we use. Haar is the simplest

wavelet function, so is the fastest for execution.

The larger the spatial support of the wavelet,

the more the number of computations. Neverthe-

less, some localization drawbacks can appear with
Haar due to its non-overlapping wavelets at a

given scale. This can be avoided with the simplest

overlapping wavelet, Daubechies4 (Daubechies,

1988). Examples of salient points extracted using

Daubechies4, Haar, Harris, and Zheng detectors

are shown in Fig. 2. Note that while for Harris and

Zheng detectors the points lead to an incomplete

image representation, for the other two detectors
the salient points are detected for smooth edges (as

can be seen in the fox image) and are not gathered

in texture regions (as can be seen in the girl image).

Hence, they lead to a more complete image re-

presentation.

Schmid et al. (2000) evaluated and compared

different point detectors and concluded that the

best results are provided by the Harris detector
(Harris and Stephens, 1988). Taking into account

that Zheng et al. (1999) showed that the perfor-

mance of their gradient-direction corner detection

is slightly inferior to that of the Harris detector, in

our further experiments we consider only Harris

Fig. 1. Salient points extraction: (a) salient points, (b) tracked coefficients, (c) spatial support of tracked coefficients.
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and PreciseHarris (see Schmid et al., 2000) detec-

tors as benchmarks.

3. Repeatability

Repeatability is defined by the image geometry.

Given a 3D point P and two projection matrices

M1 and M2, the projections of P into two images I1
and I2 are p1 ¼ M1P and p2 ¼ M2P . The point p1
detected in image I1 is repeated in image I2 if the

corresponding point p2 is detected in image I2. To
measure the repeatability, a unique relation be-

tween p1 and p2 has to be established. In the case

of a planar scene this relation is defined by an

homography: p2 ¼ H21p1.
The percentage of detected points which are

repeated is the repeatability rate. A repeated point
is not in general detected exactly at position p2, but
rather in some neighborhood of p2. The size of this
neighborhood is denoted by e and repeatability

within this neighborhood is called e-repeatability.
Moreover, to measure the number of repeated

points, we have to take into account that the ob-

served scene parts differ in the presence of changed

imaging conditions, such as image rotation or
scale change. The salient points which cannot be

observed in both images corrupt the repeatability

measure and therefore, only the points which are

detected in the common scene part should be used

to compute the repeatability. Points d1 and d2
which are detected in the common part of images
I1 and I2 are defined by fd1g ¼ fp1jH21p1 2 I2g and

fd2g ¼ fp2jH12p2 2 I1g, where fp1g and fp2g are

the points detected in images I1 and I2, re-

spectively. The set of point pairs ðd2; d1Þ which

correspond within an e-neighborhood is DðeÞ ¼
fðd2; d1Þjdistðd2;H21d1Þ < eg.

Under these conditions, the repeatability rate

for image I2 is given by:

rðeÞ ¼ jDðeÞj
N

ð3Þ

where N is the total number of points detected.

One can easily verify that 06 rðeÞ6 1.

4. Information content

Information content is a measure of the dis-

tinctiveness of a salient point. Distinctiveness is
based on the likelihood of a greyvalue descriptor

computed at the point within the population of all

observed salient point descriptors. Given one im-

age, a descriptor is computed for each of the de-

tected salient points and the information content

will measure the distribution of these descrip-

tors. If all descriptors are spread out, information

content is high and matching is likely to succeed.
On the other hand, if all descriptors are close to

each other, the information content is low and

Fig. 2. Salient points examples. For Daubechies4 and Haar salient points are detected for smooth edges (fox image) and are not

gathered in textured regions (girl image).
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matching can easily fail as any point can be mat-

ched to any other.

Information content of the descriptors is mea-

sured using entropy. The more spread out the

descriptors are, the larger the entropy is. Entropy

measures average information content. In infor-
mation theory the information content of a mes-

sage i is inversely related to its probability and is

defined as I ¼ � logðpiÞ. The average informa-

tion content per message of a set of messages

is �
P

i pi logðpiÞ which is the entropy.

In the case of salient points we would like to

know how much average information content a

salient point ‘‘has’’ as measured by its greylevel
pattern. The more distinctive the greylevel patterns

are, the larger the entropy is. To measure the dis-

tribution of local greyvalue patterns at salient

points, we have to describe a measure which de-

scribes such a pattern. In order to have rotation

invariant descriptors, we chose to characterize sa-

lient points by local greyvalue rotation invariants

which are combinations of derivatives. We com-
puted the ‘‘local jet’’ (Koenderink and van Doorn,

1987) which consisted of the set of deriva-

tives up to Nth order. These derivatives describe

the intensity function locally and are computed

stably by convolution with Gaussian deriva-

tives. The local jet of order N at a point x ¼ ðx; yÞ
for an image I and a scale r is defined by:

JN ½I �ðx; rÞ ¼ fLi1;...;inðx; rÞjðx; rÞ 2 I � Rþg, where
Li1;...;inðx; rÞ is the convolution of image I with the

Gaussian derivatives Gi1;...;inðx; rÞ, ik 2 fx; yg and

n ¼ 0; . . . ;N .

In order to obtain invariance under the group

SO(2) (2D image rotation), Koenderink and van

Doorn (1987) and ter Haar Romeny et al. (1994)

computed differential invariants from the local jet:

~mm½0 . . . 3� ¼

LxLx þ LyLy

LxxLxLx þ 2LxyLxLy þ LyyLyLy

Lxx þ Lyy

LxxLxx þ 2LxyLxy þ LyyLyy

2
664

3
775 ð4Þ

The computation of entropy requires a parti-

tioning of the space of ~mm. Partitioning is depen-

dent on the distance measure between descriptors

and we consider the approach described by

Schmid et al. (2000). The distance we used is

the Mahalanobis distance given by: dMð~mm1;~mm2Þ ¼

ðð~mm1 �~mm2ÞTK�1ð~mm1 �~mm2ÞÞ1=2, where~mm1 and~mm2 are two
descriptors and K is the covariance of ~mm. The

covariance matrix K is symmetric and positive

definite. Its inverse can be decomposed into

K�1 ¼ PTDP where D is diagonal and P an or-

thogonal matrix. Furthermore, we can define the
square root of K�1 as K�1=2 ¼ D1=2P where D1=2 is a

diagonal matrix whose coefficients are the square

roots of the coefficients of D. The Mahalanobis

distance can then be rewritten as: dMð~mm1;~mm2Þ ¼
kD1=2P ð~mm1 �~mm2Þk. The distance dM is the norm of

difference of the normalized vectors: ~mmnorm ¼
D1=2P~mm. This normalization allows us to use

equally sized cells in all dimensions. This is im-
portant since the entropy is directly dependent on

the partition used. The probability of each cell of

this partition is used to compute the entropy of a

set of vectors~mm.

5. Results

In the experiments we used a set of 1000 images

taken from the Corel database and we compared

four salient point detectors. In Section 2 we in-

troduced two salient point detectors using wave-

lets: Haar and Daubechies4. For benchmarking

purposes we also considered the Harris corner

detector (Harris and Stephens, 1988) and a variant

of it called PreciseHarris, introduced by Schmid
et al. (2000). The difference between the last two

detectors is given by the way the derivatives are

computed. Harris computes derivatives by con-

volving the image with the mask [�2�1 0 1 2]

whereas PreciseHarris uses derivatives of the

Gaussian function instead.

5.1. Results for repeatability

Before we can measure the repeatability of a

particular detector we first had to consider typical

image alterations such as image rotation and im-

age scaling. In both cases, for each image we ex-

tracted the salient points and then we computed

the average repeatability rate over the database for

each detector. The repeatability rate was com-
puted using Eq. (3).
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In the case of image rotation the rotation angle

varied between 0� and 180�. The repeatability rate

in a e ¼ 1 neighborhood for the rotation sequence

is displayed in Fig. 3.
The detectors using wavelet transform (Haar

and Daubechies4) give better results compared

with the other ones. Note that the results for all

detectors are not very dependent on image rota-

tion. The best results are provided by Daubechies4

detector.

In the case of scale changes, for each image we

considered a sequence of images obtained from the
original image by reducing the image size so that

the image was aspect-ratio preserved. The largest

scale factor used was 4. The repeatability rate for

scale change is presented in Fig. 4.

All detectors are very sensitive to scale changes.

The repeatability is low for a scale factor above 2

especially for Harris and PreciseHarris detectors.

The detectors based on wavelet transform provide

better results compared with the other ones.

5.2. Results for information content

In these experiments we also considered ran-

dom points in our comparison. For each image in

the database we computed the mean number m of

salient points extracted by different detectors and

then we selected m random points using a uniform

distribution.
For each detector we computed the salient

points for the set of images and characterized each

point by a vector of local greyvalue invariants (cf.

Eq. (4)). The invariants were then normalized and

the entropy of the distribution was computed. The

cell size in the partitioning was the same in all

dimensions and it was set to 20. The r used for

computing the greylevel invariants was 3.
The results are given in Table 1. This table

shows that the detector using the Daubechies4

wavelet transform has the highest entropy and

thus the salient points obtained are the most dis-

tinctive. The results obtained for Haar wavelet

transform are almost as good. The results obtained

with PreciseHarris detector are better than the

ones obtained with Harris but worse than the ones
obtained using the wavelet transform. Moreover,

the results obtained for all of the salient points

detectors are significantly better than those ob-

tained for random points. The difference between

the results of Daubechies4 and random points is

about a factor of 2.

In summary, the most ‘‘interesting’’ salient

points were detected using the Daubechies4

Fig. 3. Repeatability rate for image rotation (e ¼ 1).

Fig. 4. Repeatability rate for scale change (e ¼ 1).

Table 1

The information content for different detectors

Detector Entropy

Haar 6.0653

Daubechies4 6.1956

Harris 5.4337

PreciseHarris 5.6975

Random 3.124
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detector. These points have the highest informa-

tion content and proved to be the most robust to

rotation and scale changes.

6. Conclusion

We presented a salient point detector based on

wavelets. The wavelet-based salient points are in-

teresting because they are located in visual focus

points without gathering in textured regions. We

used the Haar transform for point extraction,

which is simple but may lead to bad localization.

A better approach is to use Daubechies4 wavelets
which avoid these drawbacks.

We also compared our wavelet-based salient

point extraction algorithm with two corner de-

tectors using the criteria: repeatability rate and

information content. Our points have more in-

formation content and better repeatability rate

than those of the other detectors. All detectors

have significantly more information content than
randomly selected points.
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