
IEEE MULTIMEDIA SYSTEMS ’99
Dipartimento di Sistemi e Informatica
University of Florence
Via S. Marta 3
50139 Firenze,
ITALY

Dear Prof. Alberto del Bimbo,

Enclosed is the final version of our paper entitled, “IRUS: Image Retrieval Using Shape” for IEEE ICMCS’99.

best regards,
Michael S. Lew

Author Names and Affiliations
Meirav Adoram and Michael S. Lew
Leiden Institute for Advanced Computer  Science
Niels Bohrweg 1
2333 CA Leiden
Netherlands

Contact Author:  Michael S. Lew
Email: mlew@wi.leidenuniv.nl
Telephone: +31-71-527-7034

Abstract:  Finding shapes in image databases is a challenging topic in content based retrieval. In this paper the goal is
to find database images which contain shapes similar to the query of the user. Unlike most solutions to this problem, the
algorithm presented in this paper is meant to cope with changes in rotation, scale, translation, and lossy compression
noise. A Java application was built which uses snakes and invariant moments. The GVF snake was used because it has
two significant advantages over the traditional snake formulation.  First, the GVF snake can fit into concavities, and
second, the GVF snake can fit itself to objects using both expansion and contraction of the snake. The objects in the images
were segmented with the active contours, and then invariant moments were calculated and compared with a minimum
distance classifier. Retrieval quality of the system was measured with respect to original images, rotated images, scaled
images, noisy images, and combinations of those distortions.

Keywords:  Content-based indexing/retrieval



 IRUS: Image Retrieval Using Shape

Meirav Adoram and Michael S. Lew
Leiden Institute for Advanced Computer  Science

2333 CA Leiden
Netherlands

{madoram, mlew}@cs.leidenuniv.nl

Abstract
Finding shapes in image databases is a challenging topic in
content based retrieval. In this paper the goal is to find
database images which contain shapes similar to the query of
the user. Unlike most solutions to this problem, the algorithm
presented in this paper is meant to cope with changes in
rotation, scale, translation, and lossy compression noise. A
Java application was built which uses snakes and invariant
moments. The GVF snake was used because it has two
significant advantages over the traditional snake formulation.
First, the GVF snake can fit into concavities, and second, the
GVF snake can fit itself to objects using both expansion and
contraction of the snake. The objects in the images were
segmented with the active contours, and then invariant
moments were calculated and compared with a minimum
distance classifier. Retrieval quality of the system was
measured with respect to original images, rotated images,
scaled images, noisy images, and combinations of those
distortions.

1.  Introduction

Locating and recognizing objects from images is a
challenging goal. There is no general solution, and successful
solutions are limited to specific domains. One of the obstacles
that contribute to the fact that there is still no general solution
is segmentation. How can we separate the objects from the
background? Difficulties come from discretization,
occlusions, poor contrast, viewing conditions, noise,
complicated objects, complicated background etc. In the
cases where the segmentation is less difficult and possible to
overcome, the object shape is a characteristic which can
contribute enormously in further analysis. If segmentation is
not an option, a global search in the form of template
matching is a possibility, where the template represents the
desired object to be found. However, performing template
matching over a dense structure of scales and rotations of an
image is not an interactive solution regarding searches in
large image databases.

In content-based image retrieval, the question of how to
retrieve images of interest from a given image database is
dealt with. Within this framework the shape of an object in an
image is the primary retrieval characteristic in this paper.

Shape retrieval is an intuitive query method in any
image retrieval system, either as stand-alone query or as a
combined query of shape and other cues like color and
texture. Object shape in the form of 2D boundary (contour)
will be used to locate and retrieve images from image
databases.

1.1 The Chosen Approach

In this work, the problem of image retrieval using shape was
approached by active contours and invariant moments.
Active contours were first introduced by Kass et al. [1], and
were termed snakes by the nature of their movement. Active
contours are a sophisticated approach to contour extraction
and image interpretation. They are based on the idea of
minimizing energy of a continuous spline contour subject to
constraints on both its autonomous shape and external forces
derived from a superposed image that pull the active contour
toward image features such as lines and edges.

Moments [2] describe shape in terms of its area,
position, orientation, and other parameters. The set of
invariant moments[3] makes a useful feature vector for the
recognition of objects which must be detected regardless of
position, size or orientation. Matching of the invariant
moments feature vectors is computationally inexpensive and
a promising candidate for interactive applications.

In our approach, the active contours are used in
segmentation of objects offline, and invariant moments are
used to match the objects online.

2.  Active Contours

Active contours challenge the widely held view of bottom-up
vision processes. The principal disadvantage with the bottom-
up approach is its serial nature; errors generated at a low-level
are passed on through the system without the possibility of
correction. The principal advantage of active contours is that
the image data, the initial estimate, desired contour properties
and knowledge-based constraints are integrated into a single
extraction process.

In the literature, A. D. Bimbo et al.[4] deform active
contours over a shape in an image and measure the similarity
between the two upon the degree of overlap and on how
much energy the active contour had to spend in the
deformation. A. K. Jain et al. [5] used a matching scheme



with deformable templates.  Our work is different in that we
use a GVF[8] based method to improve the automatic fit of
the snakes to the object contours.  Furthermore, we used
invariant moments to find images which have been scaled
and rotated.

Active contours are defined as energy-minimizing
splines under the influence of internal and external forces.
The internal forces of the active contour serve as a
smoothness constraint designed to hold the active contour
together (elasticity forces) and to keep it from bending too
much (bending forces). The external forces guide the active
contour towards image features such as high intensity
gradients. The optimal contour position is computed such that
the total energy is minimized. The contour can hence be
viewed as a reasonable balance between geometrical
smoothness properties and local correspondence with the
intensity function of the reference image.

Let the active contour be given by a parametric
representation v(s) = (x(s), y(s)), with s as the normalized arc
length of the contour. The expression for the total energy can
then be decomposed as follows:
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where Eint represents the internal forces (or energy) which
encourage smooth curves, Eimage represents the local
correspondence with the image function, and Econ represents a
constraint force that can be included to attract the contour to
specific points in the image plane. In the following
discussions the Econ will be ignored. Eimage is typically defined
such that locations with high image gradients or short
distances to image gradients are assigned low energy values.

2.1. Internal Energy

Eint is the internal energy term which controls the natural
behavior of the active contour. It is designed to minimize the
active contour’s curvature and make it behave in an elastic
manner. Regarding Kass et al. [1], the internal energy is
defined as
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where | | is the Euclidean norm. The first order continuity
term, weighted by α(s), makes the contour behave elastically,
whilst the second order curvature term, weighted by β(s),
makes it resistant to bending. Setting β(s) = 0 at a point s
allows the active contour to become second order
discontinuous at that point and develop a corner. Setting α(s)

= β(s) = 0 at a point s allows the active contour to become
discontinuous. Active contours can interpolate gaps in edges
phenomena known as subjective contours due to the use of
the internal energy. It should be noted that α(s) and β(s) are
defined to be functions of the curve parameter s, and hence
segments of the active contour may have different natural
behavior. Minimizing the energy of the derivatives gives a
smooth function.

2.2.  Image Energy

Eimage is the image energy term derived from the image data
over which the active contour lies and is constructed to attract
the active contour to desired feature points in the image, such
as edges and lines. The edge based functional attracts the
active contour to contours with large image gradients – that
is, to locations of strong edges.

y)I(x,edgeE ∇−=                                      (2.3)

2.3.  Problems with Active Contours

There are a number of fundamental problems with the active
contours, and solutions to those problems sometimes create
problems in other components of the active contour model.

Initialization – The final extracted contour is highly
dependent on the position and shape of the initial contour due
to the presence of many local minima in the energy function.
The initial contour must be placed near the required feature
otherwise the contour can become obstructed by unwanted
features like JPEG compression artifacts, closeness of a
nearby object, and different other noises.

Non-convex shapes – How do we extract non-convex shapes
without compensating the importance of the internal forces,
or without a corruption of the image data? For example
pressure forces [9] (addition to the external force) can push an
active contour into boundary concavities, but cannot be too
strong or weak edges will be ignored. Pressure forces must
also be initialized to push out or push in, a condition that
mandates careful initialization.

The original method of Kass et al. [1] suffered from three
main problems: dependence on the initial contour, numerical
instability, and lack of guaranteed convergence to the global
energy minimum. Amini et al. [6] improved the numerical
instability by minimizing the energy functional using
dynamic programming, which allows inclusion of hard
constraints into the energy functional. However, memory
requirements are large, being O(nm2), and the method is
slow, being O(nm3). n is the number of contour points and m
is the neighborhood size to which a contour point allowed to
move in a single iteration. Seeing the difficulties with both



previous methods Williams and Shah [7] developed the
greedy algorithm which combines speed, flexibility, and
simplicity. The greedy algorithm is faster O(nm) than the
dynamic programming and more stable and flexible for
including  constraints than the variational approach of Kass.
During each iteration, a neighborhood of each point is
examined and a point in the neighborhood with the smallest
energy value provides the new location of the point. Iterations
continue till the number of points in the active contour that
moved to a new location in one iteration is below a specified
threshold.

2.4.  Gradient Vector Flow

Since the greedy algorithm easily accommodates new
changes, there are three things we would like to add to it: the
ability to inflate the contour as well as deflate it, deform to
concavities, and to increase the capture range of the external
forces. Those three additions reduce the sensitivity to
initialization of the active contour and allow deformation
inside concavities. This can be done by replacing the existing
external force (image term) with the gradient vector flow
(GVF) [8]. The GVF is an external force computed as a
diffusion of the gradient vectors of an image, without blurring
the edges. The idea of the diffusion equation is taken from
physics. An example of the effect of the GVF external force
can be seen in Figure 2.1. Figure 2.1 (a)-(c) shows the
differences between the deformation with the gradient
magnitude and the deformation with the gradient vector flow
in the presence of a concavity. In Figure 2.2 we see the ability
to inflate due to the use of the GVF as an external force.
Figure 2.3 demonstrates the ability of the active contour with
the GVF to cope with initialization across the shape.

Xu and Prince in [8] define the gradient vector flow
(GVF) field to be the vector field  v(i,j) = (u(i,j), v(i,j)) which
is updated with every iteration of the diffusion equations,
Equations (2.4) and (2.5).
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The initial values of u and v are the gradient values.
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(a) (b) (c)
Figure 2.1 The convergence of the active contour, (a) an initial
position of the active contour in red dots for (b) and (c), (b)
deformation with the gradient magnitude as the external force,
(c) deformation with the GVF as the external force.

(a) (b) (c)
Figure 2.2 Inflation of the active contour, (a) initial position of
the active contour, (b) final position of the active contour with
the gradient magnitude, (c) final position of the active contour
with the GVF.

Where Gi is the first element of the gradient vector and Gj is
the second element.
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The second term in Equations (2.4) and (2.5) is the Laplacian
operator. The intuition behind the diffusion equations is that
in homogeneous regions, the first and third terms are zeros
since the gradient is zero, and within those regions, u and v
are each determined by Laplace’s equation. This results in a
type of “filling-in” of information taken from the boundaries



of the region. In regions of high gradient v is kept nearly
equal to the gradient.

(a) (b) (c)
Figure 2.3.  Initialization across the shape, (a) initial position,
(b) deformation with the gradient magnitude, (c) deformation
with the GVF.

Creating GVF field yields streamlines to a strong edges. In
the presence of these streamlines, blobs and thin lines in the
way to strong edges do not form any impediments to the
movement of the active contour. It can be considered as an
advantage if the blobs are in front of the shape, nevertheless it
can be considered as a disadvantage if the active contour
enters the shape’s silhouette.

3.   Invariant Moments

For a 2-D continuous function f(x, y), the moment of order (p
+ q) is defined for p,q =0,1,2,...  as
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The infinite set of moments {mpq, p, q = 0, 1, …} uniquely
determine f(x, y), and vice-versa. In the case of a digital
image, the moments are approximated by
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where the order of the moment is (p + q) as the above
formulation, x and y are the pixel coordinates relative to some
arbitrary standard origin, and f(x, y) represents the pixel
brightness.

In a binary image m00 is the same as the area. The
centroid of a shape can be expressed in terms of moments as
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To have moments that are invariant to translation, scale, and
rotation, first the central moments are calculated, µ,
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and then the normalized central moments are calculated, η, as
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From these normalized parameters a set of invariant moments
{φ} found by Hu[3], may then be calculated. The seven
equations of the invariant moments contain terms up to order
3. The following is the derived list of the invariant moments:
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Global (region) properties provide a firm common base for
similarity measure between shapes silhouettes where gross
structural features can be characterized by those moments.
Since we don’t deal with occlusion and the noise factor in the
local search, the invariance to position, size, and orientation,
and finally the low dimensionality as a vector of seven
elements seems to be a good choice for using the invariant
moments in matching shapes. The logarithm of the invariant
moments is taken to reduce the dynamic range.

4.  The Implementation of IRUS

In the off-line processing on every image in the database we
place one active contour and deform it to the edges of the
object in the image. From the resulting contour we calculate
the invariant moments yielding a vector of seven elements.
For every image we have two vectors, one for every
algorithm. Those two vectors of every image in the database
are written to a file called “features.res”.

In the on-line processing, the active contour is placed
around the user’s shape, and deformed using the specified
algorithm. Next, the invariant moments are calculated
producing a vector of seven elements. The vector of the
invariant moments is matched with the Euclidean distance to
all the vectors from the chosen algorithm in the “features.res”
file. The number of best matches to be shown can be adjusted
interactively. Figure 4.1 shows the system flowchart.
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Figure 4.1  The Implementation of IRUS

5.   Experiments

This section examines the retrieval behavior of IRUS. The
test set preparation, the performance evaluation technique to
measure retrieval accuracy, and the results including retrieval
speed are all presented and discussed.

5.1.   Database and Test Set

The image database used in this work consisted of 3,500
graphics and trademarks images.  These images were chosen
because they have precisely one object per image.
Nevertheless, they are useful to graphics professionals and
often used in presentations, flyers, brochures, and websites.
Samples of images from the database are shown below in
Figure 5.1.  To be able to measure the performance with
respect to scale, rotation, and noise, we took the following
steps:  1500 images were randomly selected from the
database to serve as the queries group.

Figure 5.1 Samples of images from the database.

For each image from the queries group we applied the
following operations, and the resulting images were
added to the database.

(a) Random rotation between: 0 to 360 degrees.
(b) Random scale between 50% - 200%.
(c) JPEG compression noise from Quality = 75%.
(d) Combination of (a) and (b) with the same values

as in (a) and (b).
(e) Combination of (a), (b), and (c), with the same

values used in (a), (b), and (c).

5.2.   The Performance Evaluation Technique

The performance evaluation technique that we use are based
on ideas proposed for the Philips Research benchmarking
investigation [10].   In their study, the  “visible window” is
defined to be the top log2n (n is the database size) matches.
The premise behind this criterion is that a user typically only
looks at the first page of results.  As the database size, n,
grows, a visible window of size L = log n stays user friendly.
The visible fraction is defined as the percentage of correct
results that appear in the visible window.

The second important question is where the correct
matches are placed within the visible window.  The visible
position, Pv, is defined as the ranking error divided by the size
of the visible window, L.

5.3.   Results

The weights used for the testing were 0.3 continuity weight,
0.6 curvature weight, and 1.4 image weight. Since the
distance to the object in the database image is not known, we
need relatively high image weight (1.4). We also would like
to maintain some structure in the active contour’s
deformation (0.6), and have equal distances between active
contour’s points (0.3). With the greedy + GVF algorithm, the
weights values were: 0.4 continuity weight, 0.3 curvature
weight, and 0.65 image weight. Since the GVF field provides
extended capture range, the image weight (0.65) is lower
compared to the greedy case.



Figure 5.2.  Results from an image query of the clock in position 0.

Figure 5.3.  Results from a query of the balloons in position 0.

Figures 5.2 and 5.3 display results for images of a clock and
ballons.  Note that in Figure 5.3., results 7 and 8 were found
before 9.  This occurred because the active contour for result
9 went through one of the strings.  For these tests, the GVF
based method had a consistently greater visible fraction and
visible position as shown in Figure 5.4.  The most difficult
situation was rotation for the Greedy method and JPEG
compression noise for GVF.  The average retrieval time was
1.6 seconds on a Pentium II at 266 MHZ with 128MB RAM.
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Figure 5.4 The retrieval performance results for L = 11

5.4.   Limitations

We assume that there is only one object in each image.
Complex scenes with many objects will not be segmented
correctly, which will result in incorrect moments and low

retrieval accuracy.  As mentioned earlier, the general problem
of segmentation is difficult and unlikely to be completely
solved in the near future.  Furthermore, many useful contexts
only have one object per image such as clipart and trademark
databases. The snake method has the advantage that a
smoothness parameter can be adjusted for applications where
the discretization noise or lossy compression artifacts are
known to be large.

6.   Conclusions

In this work, we showed that the GVF based snakes give
better retrieval results than the traditional snakes.  In
particular, the GVF snakes have the advantage over
traditional snakes in that it is not necessary to know apriori
whether the snake must be expanded or contracted to fit the
object contour.  Furthermore, the GVF snakes have the ability
to fit into concavities in the object, which traditional snakes
typically can not do.  Both of these factors resulted in
significant retrieval accuracy improvements in the context of
finding rotated, scaled, and JPEG compressed images.

Future work will focus on comparing different shape
features regarding retrieval accuracy, and investigating
automatic methods for segmenting multiple objects from the
database images.
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