
Improving Visual MatchingMichael S. Lew Nicu SebeLeiden Institute of Advanced ComputerScience, Leiden, The Netherlandsfmlew, nicug@liacs.nl Thomas S. HuangBeckman Institute, University of Illinoisat Urbana-Champaign, USAhuang@ifp.uiuc.eduAbstractMany visual matching algorithms can be describedin terms of the features and the inter-feature distanceor metric. The most commonly used metric is thesum of squared di�erences (SSD), which is valid froma maximum likelihood perspective when the real noisedistribution is Gaussian. Based on real noise distribu-tions measured from international test sets, we havefound experimentally that the Gaussian noise distri-bution assumption is often invalid. This implies thatother metrics, which have distributions closer to thereal noise distribution, should be used. In this paperwe considered two di�erent visual matching applica-tions: content-based retrieval in image databases andstereo matching. Towards broadening the results, wealso implemented several sophisticated algorithms fromthe research literature. In each algorithm we comparedthe e�cacy of the SSD metric, the SAD (sum of theabsolute di�erences) metric, the Cauchy metric, andthe Kullback relative information. Furthermore, in thecase where su�cient training data is available, we dis-cussed and experimentally tested a new metric based di-rectly on the real noise distribution, which we denotedthe maximum likelihood metric.1. IntroductionAt the core of many algorithms in computer visionis the metric or similarity measure used to determinethe distance between two features. The SSD (sum ofthe squared di�erences) and SAD (sum of the abso-lute di�erences) are the most commonly used metrics.This brings to mind several questions. First, underwhat conditions should one use the SSD versus theSAD? From a maximum likelihood perspective, it iswell known that the SSD is justi�ed when the addi-tive noise distribution is Gaussian. The SAD is justi-�ed when the additive noise distribution is Exponential(double or two-sided exponential). Therefore, one candetermine which metric to use by checking if the realnoise distribution is closer to the Gaussian or the Expo-nential. This leads to the second question: What dis-tance measure do we use in comparing the real noise

distribution to the best �t Gaussian or Exponentialdistributions? This is not an easy question to answerbecause the choice of the distance measure will bias thecomparison. Ideally, we would also like to use a max-imum likelihood distance measure to compare the twodistributions. However, we would need to measure dis-tributions from a statistically large number of datasets.For example, to obtain one representative distribution,�, we need a dataset which contains a statistically largenumber of examples. To �nd a distribution of the vari-ance of each element of �, we would need a statisticallylarge number of datasets. In practice, the Chi-squaretest is frequently used, and since we have not found abetter solution, we used it for comparing the distribu-tions.The common assumption is that the real noise dis-tribution should �t either the Gaussian or the Expo-nential, but what if this assumption is invalid? Whatif there is another distribution which �ts the real noisedistribution better than the Gaussian or the Exponen-tial? It is precisely this question which we examined inthis paper. Toward answering this question, we haveendeavored to use international test sets and promisingalgorithms from the color indexing and stereo matchingresearch literature.Color indexing is one of the most prevalent retrievalmethods in content based image retrieval. Given aquery image, the goal is to retrieve all the images whosecolor compositions are similar to the color compositionof the query image. Typically, the color content is de-scribed using a histogram [15]. In general, color his-tograms are computed and the histogram intersectioncriterion is used to compare them. Hafner, et al. [8]suggests the usage of a more sophisticated quadraticform of distance measure, which tries to capture theperceptual similarity between any two colors. In all ofthese works, most of the attention has been focussedon the color model with little or no consideration ofthe noise models.Stereo matching implies �nding correspondences be-tween two or more images. If these correspondencescan be found accurately and the camera geometry is



known, then a 3D model of the environment can bereconstructed [2]. In [6], pixel correspondences arefound by adaptive, multi-window template matching.The templates are compared using the SSD. Recentresearch by [3] concluded that the SSD is sensitive tooutliers and therefore robust M-estimators should beused regarding stereo matching. However, the authors[3] did not consider metrics based on similarity distri-butions. They considered ordinal metrics, where anordinal metric is based on relative ordering of inten-sity values in windows - rank permutations. Cox, etal. [5] presented a stereo algorithm which optimizes amaximum likelihood cost function. This function as-sumes that corresponding features in the left and rightimages are normally distributed about a common truevalue. However, the authors [5] noticed the normaldistribution assumption used to compare correspond-ing intensity values is violated for some of their testsets. They altered the stereo pair so that the noisedistribution would be closer to a Gaussian. In our ap-proach, we attempt to �nd a better model for the realnoise distribution instead of altering the stereo pair.Boie and Cox [4] consider a model of camera noisecomprised of stationary direction-dependent electronicnoises combined with uctuations due to signal statis-tics. These uctuations enter as a multiplicative noiseand are non-stationary and vary over the scene. Asubstantial simpli�cation appears if the noise can bemodeled as Gaussian distributed and stationary. Thiswork is complementary to ours. They try to model theimaging noise. We try to model the noise between twoimages which are di�erent due to varying orientation,or printer noise.Section 2 describes the mathematical support forthe maximum likelihood approach. The setup of ourexperiments is given in Section 3. In Section 4 we ap-ply the theoretical results from Section 2 to determinethe inuence of the real noise model on the accuracyof retrieval methods in color image databases. In Sec-tion 5 we study the real noise model to be chosen instereo matching applications. Conclusions are given inSection 6.2. Maximum Likelihood ApproachConsider M image pairs (or more generally, featurevectors) from the database (D): (xi; yi) 2 D, withi = 1; � � � ;M . The images in each pair were chosen tobe similar according to the ground truth (G):xi � yi; i = 1; � � � ;M (1)Equation (1) can be further written as:xi = yi + ni; i = 1; � � � ;M (2)where ni represent the \noise" image obtained as thedi�erence between the other two images.

In this context, the similarity probability can be de-�ned: P (G) = MYi=1 fexp[��(xi; yi)]g (3)where function � is the negative logarithm of the prob-ability density of the noise.According to (3), we have to �nd the probabilitydensity function of the noise which maximizes the sim-ilarity probability: maximum likelihood estimate forthe noise distribution [11].Taking the logarithm of (3) and using (2) we �ndthat we have to minimize the expression:MXi=1 �(ni) (4)where ni = xi � yi and the operation \-" denotes thedi�erence between corresponding elements in the im-ages or in their feature vectors.To analyze the behavior of the estimate we take theapproach described in [9] based on the inuence func-tion. The inuence function characterizes the bias thata particular measurement has on the solution and isproportional to the derivative,  , of the estimate: (z) � d�(z)dz (5)In the case where the noise is Gaussian distributed:Probfxi � yig � exp(�(xi � yi)2) (6)then �(z) = z2  (z) = z (7)If the errors are Exponential distributed, namelyProbfxi � yig � exp(�jxi � yij) (8)then, �(z) = jzj  (z) = sgn(z) (9)In this case, using (4), we minimize the mean abso-lute deviation, rather than the mean square deviation.Here the tails of the distribution, although exponen-tially decreasing, are asymptotically much larger thanany corresponding Gaussian.A distribution with even more extensive tails is theCauchy distribution,Probfxi � yig � 1a2 + (xi � yi)2 (10)where a is a parameter which determines the heightand the tails of the distribution.This implies�(z) = log(a2 + z2)  (z) = za2 + z2 (11)For normally distributed errors, (7) says that themore deviant the points, the greater the weight. By
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Figure 1. An overview of a similarity matching algorithmcontrast, when tails are somewhat more prominent,then (9) says that all deviant points get the same rel-ative weight, with only the sign information used. Fi-nally, when the tail are even larger, (11) says  in-creases with deviation, then starts decreasing, so thatthe true outliers are not counted at all.The additive noise model in (2) is the dominantmodel used in computer vision regarding maximumlikelihood estimate. For example, Haralick and Shapiro[10] consider this model in de�ning the M-estimate: "...of the form minPi �(xi�Tk) is called an M-estimate."Note that the operation "-" between the estimate (Tk)and the real data (xi) implies an additive model.In summation, one can note that (7) resembles theL2 metric, while (9) and (11) resemble the L1 and Lcmetrics, respectively. Thus, the maximum likelihoodapproach gives a direct connection between the noisedistribution and the comparison metrics. If � is thenegative logarithm of the probability density of thenoise, then the corresponding metric is given by (4).In practice, the probability density of the noise can beestimated from the normalized histogram of the abso-lute di�erences.3. Experimental SetupFirst, we assume that representative ground truthis provided. The ground truth is split into two non-overlapping sets: the training set and the test set asshown in Figure 1. Note that Lk is a notation for allpossible metrics that can be used, e.g. L1, L2, Lc. Sec-ond, the training set is converted to a histogram whichis then normalized and denoted as the real noise distri-bution. The Gaussian, Exponential, and Cauchy dis-tributions are �tted to the real noise distribution. TheChi-square test is used to �nd the �t between each ofthe model distributions and the real distribution. Weselect the model distribution which has the best �t andits corresponding metric (Lk) is used in ranking. Theranking is done using only the test set. For benchmark-ing purposes in all of the experiments we compare ourresults with the ones obtained using the Kullback rela-tive information (K) [12]. We chose the Kullback rela-

tive information because it is the most frequently usedsimilaritymeasure in information theory. Furthermore,Rissanen [14] showed that it serves as the foundationfor other minimum description length measures such asAkaike's [1] information criterion. Regarding the rela-tionship between the Kullback relative information andthe maximum likelihood approach, Akaike [1] showedthat maximizing the expected log likelihood ratio inmaximum likelihood estimation is equivalent to maxi-mizing the Kullback relative information.It is important to note that for real applications, theparameter in the Cauchy distribution is found when�tting this distribution to the real distribution fromthe training set. This parameter setting would be usedfor the test set and any future comparisons in thatapplication.For our image retrieval experiments we consideredthe applications of color image retrieval in printer-scanner copy location and object recognition by colorinvariance. In the copy location application, the goalis to �nd copies of an image taken from a magazine,newspaper, or book. This task involves noise due tothe dithering patterns of the printer and scanner noise.Furthermore, it is easy to verify that color printers donot produce the same colors, brightness, or contrast asthe original. In object recognition, multiple picturesare taken of a single object at di�erent orientations.Therefore, the correct match for an image is known bythe creator of the ground truth.In stereo matching, the ground truth is typicallygenerated manually. A set of reference points are de-�ned in the images and then a person �nds the corre-spondences for the stereo pair.In summary, our algorithm for choosing an analyticmetric can be described as follows:Step 1 Compute the feature vectors from the training setStep 2 Compute the real noise distribution from the dif-ferences between corresponding elements of the featurevectorsStep 3 Compare each of the model distributions to thereal noise distribution using the Chi-square test
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Figure 2. Noise distribution in the Corel database compared with the best fit Gaussian (a) (approximation error is 0.106) , best

fit Exponential (b) (approximation error is 0.082) and best fi t Cauchy (c) (approximation error is 0.068)Step 3.1 For a parameterized metric such as Lc com-pute the value a of the parameter that minimizesthe Chi-square testStep 4 Select the corresponding Lk of the best �t modeldistributionStep 4.1 Use the value a found from Step 3.1 in theparameterized metricsStep 5 Apply the Lk metric in rankingAs noted in the previous section, it is also possible tocreate a metric based on the real noise distribution us-ing maximum likelihood theory. Consequently, we de-note the maximum likelihood (ML) metric as (4) where� is the negative logarithm of the normalized histogramof the absolute di�erences from the training set. Notethat the histogram of the absolute di�erences is nor-malized to have area equal to one by dividing the his-togram by the total number of examples in the trainingset. This normalized histogram is our approximationfor the probability density function.4. Similarity Noise in Color IndexingOur formulation of the image retrieval problem isas follows: Let D be an image database and Q be thequery image. Obtain a permutation of the images in Dbased on Q, i.e assign rank(I) 2 [jDj] for each I 2 D,using some notion of similarity to Q. The problem isusually solved by sorting the images Q0 2 D accordingto jf(Q0)�f(Q)j, where f(�) is a function computingfeature vectors of images and j � j is some distance mea-sure de�ned on feature vectors.We applied the theoretical results described in Sec-tion 2 in two experiments. We determined the in-uence of the similarity noise model on �nding sim-ilar images which di�er due to either printer-scannernoise or change of viewpoint. We used two color imagedatabases. The �rst one was the Corel Photo databaseand the second one consisted of 500 reference imagesof domestic objects, tools, food cans, art artifacts, etc.For benchmarking purposes in both experimentswith color databases we compared our results with the

ones obtained using the quadratic distance measure(Lq) proposed by Hafner, et al. [8].The performance evaluation was formulated as fol-lows: LetQ1; � � � ;Qn be the query images and for the i-th queryQi, I(i)1 ; � � � ; I(i)m be the images similarwithQiaccording to the ground truth. The retrieval methodwill return this set of answers with various ranks. Asan evaluation measure of the performance of the re-trieval method we used recall vs. precision at di�erentscopes: For a queryQi and a scope s > 0, the recall r isde�ned as jfI(i)j jrank(I(i)j ) � sgj=m, and the precisionp is de�ned as jfI(i)j jrank(I(i)j ) � sgj=s.4.1. Experiments with Noisy Copy PairsThe �rst experiments were done using 8,200 im-ages from the Corel database. We used this databasebecause it represents a widely used set of photosby both amateur and professional graphical design-ers. Furthermore, it is available on the Web athttp://www.corel.com.Before we can measure the accuracy of particularmethods, we �rst had to �nd a challenging and objec-tive ground truth for our tests. The idea of our exper-iments was to measure the e�ectiveness of a retrievalmethod when trying to �nd a copy of an image in amagazine or newspaper. In order to create the groundtruth we printed 82 images using an Epson Stylus 800color printer at 720 dots/inch and then scanned eachof them at 400 pixels/inch using an HP IIci color scan-ner. Note that we purposely chose a hard test set. Thequery image is typically very di�erent from the targetimage. The copy pairs typically di�er by color shifts,quantization artifacts, and dithering noise.We used the HSV color model and quantized H us-ing 4 bits, S using 2 bits and V using 2 bits. The�rst question we asked was, "Which distribution is agood approximation for the real color model noise?"To answer this we needed to measure the noise withrespect to the color model. The real noise distributionwas obtained as the normalized histogram of di�erencesbetween the elements of color histograms correspond-



ing to copy-pair images from the training set (50 imagepairs).In �tting the Exponential, Gaussian, and Cauchydistributions to the real noise distribution, the Cauchyhad the best �t followed by the Exponential and thenthe Gaussian as shown in Figure 2. Consequently, thisimplies that the Cauchy metric should have the bestaccuracy followed by the Exponential and Gaussian.From the tests, as shown in Figure 3, it is clear thatLc gives a signi�cant improvement in accuracy as com-pared to L2, L1, and Lq . The Kullback relative in-formation and Lq give better accuracy than L2 or L1.Overall, the ML metric gives the best accuracy.Another interesting performance evaluation is to dis-play the percentage of correct copies found within thetop n matches. These results are shown in Table 1.Top 20 40 100L2 48.78 54.87 67.07L1 62.19 68.29 84.14Lq 66.34 73.66 88.29K 68.29 75.60 86.58Lc a=1.32 71.95 79.26 92.68ML 75.60 82.92 96.34
Table 1. Retrieval accuracy in the Corel database
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Figure 3. Precision/Recall in Corel database; for Lc,a=1.324.2. Experiments with Object RecognitionIn the second experiment we used a database con-sisting of 500 images of color objects such as domesticobjects, tools, toys, food cans, etc. As ground truth weused 48 images of 8 objects taken from di�erent cameraviewpoints (6 images for a single object). For this ex-periment we chose to implement a method designed forindexing by color invariants. Our goal was to study theinuence of the similarity noise on the retrieval results.Gevers, et al. [7] analyzed and evaluated variouscolor features for the purpose of image retrieval bycolor-metric histogram matching under varying illu-mination environments. They introduced a new colormodel l and showed that it is invariant for both matteand shiny surfaces:

l1(R;G;B) = (R�G)2(R�G)2 + (R�B)2 + (G�B)2 (12)l2(R;G;B) = (R�B)2(R�G)2 + (R�B)2 + (G�B)2 (13)l3(R;G;B) = (G�B)2(R�G)2 + (R�B)2 + (G�B)2 (14)where R, G, B are the color values in the RGB colorspace.The authors [7] concluded that this color model isthe most appropriate color model to be used for imageretrieval by color-metric histogrammatching under theconstraint of a white illumination source. This conclu-sion was drawn using histogram intersection (L1) asthe comparison metric between the color histograms.Precision RecallScope 5 10 25 5 10 25L2 0.425 0.258 0.128 0.425 0.517 0.642L1 0.45 0.271 0.135 0.45 0.542 0.675Lq 0.46 0.280 0.143 0.46 0.561 0.707K 0.466 0.279 0.138 0.466 0.558 0.692Lc 0.525 0.296 0.146 0.525 0.592 0.733ML 0.533 0.304 0.149 0.533 0.618 0.758
Table 2. Precision/Recall at various scopes for the color

objects database; for Lc, a=2.88
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Figure 5. Precision/Recall for the color objects database;

for Lc, a=2.88Using 24 images with varying viewpoint as the train-ing set, we calculated the real noise distribution andstudied the inuence of di�erent distance measures onthe retrieval results. We used the l color model intro-duced before and we quantized each color componentwith 3 bits resulting in color histograms with 512 bins.The Cauchy distribution was the best match for thereal noise distribution. The Exponential distributionwas a better match than the Gaussian (Figure 4). Ta-ble 2 shows the precision and recall values at variousscopes. The results obtained with Lc were consistentlybetter than the ones obtained with the other measures.Figure 5 shows the precision-recall graphs. The curve
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Figure 4. Noise distribution in color objects database comp ared with the best fit Gaussian (a) (approximation error is 0. 123),
best fit Exponential (b) (approximation error is 0.088) and b est fit Cauchy (c) (approximation error is 0.077)corresponding to Lc is above the others showing thatthe method using Lc is more e�ective. Note that theKullback relative information and Lq perform betterthan L1 or L2.In summary, Lc performed better than the analyticdistance measures, and the ML metric performed bestoverall. It is interesting that the Kullback relative in-formation performed consistently better than the his-togram intersection (L1) metric, and roughly the sameas Lq.5. Similarity Noise in Stereo MatchingStereo matching is the process of �nding correspon-dences between entities in images with overlappingscene content. The images are typically taken fromcameras at di�erent viewpoints which implies that theintensity of corresponding pixels may not be the same.In the �rst experiments we used two standard stereodata sets (Castle set and Tower set) provided byCarnegie Mellon University. These datasets containmultiple images of static scenes with accurate informa-tion about object locations in 3D. The 3D locations aregiven in X-Y-Z coordinates with a simple text descrip-tion (at best accurate to 0.3 mm) and the correspond-ing image coordinates (the ground truth) are providedfor all eleven images taken for each scene. For eachimage there are provided 28 points as ground truth inthe Castle set and 18 points in the Tower set.Let I1 and I2 represent intensities in two templatesi.e. there exist n tuples (I11; I12); � � � ; (In1 ; In2 ), n de-pending on the size of the template used. The quan-tity SSD =Pni=1(Ii1�Ii2)2 measures the squared Eu-clidean distance between (I1; I2) and a value close tozero indicates a strong match. The other metrics L1and Lc can be de�ned similarly.In each image we considered the templates aroundpoints which were given by the ground truth. Wewanted to �nd the model for the real noise distributionwhich assured the best accuracy in �nding the corre-sponding templates in the other image. As a measureof performance we computed the accuracy of �nding

the corresponding points in the neighborhood of onepixel around the points provided by the test set. Insearching for the corresponding pixel, we examined aband of height 7 pixels and width equal to the imagedimension centered at the row coordinate of the pixelprovided by the test set.In this application we used a template size of n=25,i.e. a 5x5 window around the central point. For thetraining sets, we placed templates around 10 pointswhich were obtained from the ground truth.As one can see from Table 3 the Cauchy distributionhad the best �t to the real noise distribution relative toL1 and L2. Therefore, one expects the accuracy to bethe greatest when using Lc (Table 4). In all cases theresults obtained with L2 are the worst. Furthermore,Lc has the best accuracy relative to the other analyticsimilarity measures for both test sets.Set Gauss Exponential CauchyCastle 0.0486 0.0286 0.0246Tower 0.049 0.045 0.043
Table 3. The approximation error for the corresponding

point noise distribution in stereo matching for three dis-

tribution modelsSet L2 L1 K Lc MLCastle 91.05 92.43 92.12 93.71 a=7.47 94.52Tower 91.11 93.32 92.84 94.26 a=5.23 95.07
Table 4. The accuracy of the template based stereo

matcher (%)In addition, we investigated the inuence of simi-larity noise using two promising stereo algorithms andanother stereo pair from the research literature. Ourintention was to try other distance measures than SSD(which was used in the original algorithms) in calcu-lating the disparity map.The �rst algorithm introduced by Fusiello, et al.[6], is an adaptive, multi-window scheme using left-



Figure 6. The nine asymmetric correlation windows
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Figure 7. Noise distribution for the Robots stereo pair comp ared with the best fit Gaussian (a) (approximation error is 0. 0267),

best fit Exponential (b) (approximation error is 0.0156) and best fit Cauchy (c) (approximation error is 0.0147)right consistency to compute disparity. For each pixelthe correlation with nine di�erent windows (Figure 6)is performed and the disparity with the smallest SSD(L2) error value is retained. The authors conclude thatthe adaptive, multi-window scheme clearly outperforms�xed window schemes. Moreover, the left-right consis-tency check proves to be e�ective in eliminating falsematches and identifying occluded regions.The second algorithm we implemented and testedwas introduced by Cox, et al. [5]. Their algorithmoptimizes a maximum likelihood cost function. Thisfunction assumes that corresponding features in theleft and right images are normally distributed about acommon true value and consists of a weighted squarederror term if two features are matched or a (�xed) costif a feature is determined to be occluded. Their ideawas to perform matching on the individual pixel in-tensity, instead of using an adaptive window as in thearea-based correlation methods.In order to evaluate the performance of the stereomatching algorithms under di�cult matching condi-tions we also used the Robots stereo pair [13]. Thisstereo pair is more di�cult due to varying levels ofdepth and occlusions (Figure 8). This fact is illustratedin the shape of the real noise distribution (Figure 7).Note that the distribution in this case has wider spreadand is less smooth. For this stereo pair, the groundtruth consisted of 1276 point pairs, given with one pixelaccuracy.Consider a point in the left image given by theground truth. The displacement of the correspondingpoint position in the right image is given by the dis-parity map. The accuracy is given by the percentageof pixels in the test set which are matched correctly by

Figure 8. Robots stereo pairthe algorithm.In Tables 5 and 6 the results using di�erent dis-tance measures are presented for Fusiello's and Cox'salgorithms, respectively. Using ML gave an improve-ment in accuracy of 3 to 9 percent over the originalimplementations which used L2. Among the analyticmetrics, Lc consistently had the best accuracy.Set L2 L1 K Lc MLCastle 92.27 92.92 92.76 94.82 a=7.47 95.73Tower 91.79 93.67 93.14 95.28 a=5.23 96.05Robots 72.15 73.74 75.87 77.69 a=26.2 79.54
Table 5. Accuracy (%) using the multiple window stereo
algorithm (Fusiello)Set L2 L1 K Lc MLCastle 93.45 94.72 94.53 95.72 a=7.47 96.37Tower 93.18 95.07 94.74 96.18 a=5.23 97.04Robots 74.81 76.76 78.15 82.51 a=26.2 84.38
Table 6. Accuracy (%) using the maximum likelihood

stereo algorithm (Cox)



6. Discussion and ConclusionsIn summary, we examined two topic areas from com-puter vision which were content based retrieval andstereo matching. Regarding content based retrieval,the �rst application was �nding copies of images whichhad been printed and then scanned. For this appli-cation we used the Corel stock photo database and acolor histogram method for �nding the copies. Thesecond application dealt with object recognition usingcolor invariance. Both the ground truth and the algo-rithm came from the work by Gevers, et al. [7]. Notethat in their work, they used the SAD metric. Further-more, for both applications, we implemented Hafner's[8] quadratic perceptual similarity measure as a bench-mark.The second topic area we examined was stereomatching. We implemented a template matching algo-rithm, an adaptive, multi-window algorithmby Fusiello[6], and a maximum likelihood method using pixel in-tensities by Cox, et al. [5]. Note that the SSD was usedin the work by Fusiello [6] and in the work by Cox [5].For both topic areas and applications in our experi-ments, the ML metric consistently outperformed all ofthe analytic metrics. Minimizing the ML metric is op-timal with respect to maximizing the likelihood of thedi�erence between image elements when the real noisedistribution is representative. Therefore, the breakingpoints occur when there is no ground truth, or whenthe ground truth is not representative.The �rst problem that this paper addresses iswhether the SSD is appropriate to use for computer vi-sion applications in content based retrieval and stereomatching. From our experiments, the SSD is typicallynot justi�ed because the real noise distribution is notGaussian.There appear to be two methods of applying max-imum likelihood toward improving the accuracy ofmatching algorithms. The �rst method recommendsaltering the images so that the measured noise distribu-tion is closer to the Gaussian and then using the SSD.The second method is to �nd a metric which has a dis-tribution which is close to the real noise distribution.Our experiments suggest that real noise distributionscan be modeled using the Cauchy distribution betterthan with the Gaussian or Exponential. We used theChi-square test as the measure of �t between the distri-butions, and found in our experiments that it served asa reliable indicator for distribution selection. Further-more, the Kullback relative information also appears tobe more accurate in our experiments than the SSD, butnot as accurate as the Cauchy metric. Either methodhas the potential to improve the accuracy of a widerange of vision algorithms (particularly those in which

the SSD or SAD are used).Therefore, our main contributions are in showingthat the prevalent Gaussian distribution assumption isoften invalid, and in proposing the Cauchy metric asan alternative to both the SAD and Kullback relativeinformation. In the case where representative groundtruth can be obtained for an application, we provided amethod for selecting the appropriate metric. Further-more, we explained how to create a maximum likeli-hood metric based on the real noise distribution, andin our experiments we found that it consistently out-performed all of the analytic metrics.In future work we intend to examine the inuenceof multi-parameter distributions towards achieving abetter �t to the real distribution.References[1] H. Akaike. Information theory and an extension ofthe maximum likelihood principle. 2nd InternationalSymposium on Information Theory, Armenia, 1971.[2] S. Barnard and M. Fischler. Computational stereo,comp. survey. Science, 194:283{287, 1976.[3] D.N. Bhat and S.K. Nayar. Ordinal measures for imagecorrespondence. IEEE Trans. on PAMI, 20(4):415{423, 1998.[4] R. Boie and I. Cox. An analysis of camera noise. IEEETrans. on PAMI, 14(6):671{674, 1992.[5] I. Cox, S. Hingorani, and S. Rao. A maximum likeli-hood stereo algorithm. CVIU, 63(3):542{567, 1996.[6] A. Fusiello, V. Roberto, and E. Trucco. E�cient stereowith multiple windowing. CVPR, pages 858{863, 1997.[7] T. Gevers and A. Smeulders. Color-based object recog-nition. Pattern Recognition, 32(3):453{464, 1999.[8] J. Hafner, H. Sawhney, W. Equitz, M. Flickner, andW. Nyblack. E�cient color histogram indexing forquadratic form distance functions. IEEE Trans. onPAMI, 17(7):729{736, 1995.[9] F.R. Hamper, E.M. Ronchetti, P.J. Rousseeuw, andW.A. Stahel. Robust Statistic: The Approach Basedon Inuence Functions. John Wiley & Sons, 1986.[10] R. Haralick and L. Shapiro. Computer and Robot Vi-sion II. Addison-Wesley, 1993.[11] P.J. Huber. Robust Statistic. NewYork: Wiley, 1981.[12] S. Kullback. Information theory and statistics. DoverPublications, 1968.[13] M. Lew, T. Huang, and K. Wong. Learning and featureselection in stereo matching. IEEE Trans. on PAMI,16(9):869{882, 1994.[14] J. Rissanen. Modeling by shortest data description.Automatica, 14:465{471, 1978.[15] M.J. Swain and D.H. Ballard. Color indexing. IJCV,7(1):11{32, 1991.


