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Abstract

Many visual matching algorithms can be described
in terms of the features and the inter-feature distance
or metric. The most commonly used metric is the
sum of squared differences (SSD), which is valid from
a maximum likelihood perspective when the real noise
distribution is Gaussian. Based on real noise distribu-
tions measured from international test sets, we have
found experimentally that the Gaussian noise distri-
bution assumption is often invalid. This implies that
other metrics, which have distributions closer to the
real noise distribution, should be used. In this paper
we considered two different visual matching applica-
tions: content-based retrieval in image databases and
stereo matching. Towards broadening the results, we
also implemented several sophisticated algorithms from
the research literature. In each algorithm we compared
the efficacy of the SSD metric, the SAD (sum of the
absolute differences) metric, the Cauchy metric, and
the Kullback relative information. Furthermore, in the
case where sufficient training data is available, we dis-
cussed and experimentally tested a new metric based di-
rectly on the real noise distribution, which we denoted
the mazxzimum likelihood metric.

1. Introduction

At the core of many algorithms in computer vision
is the metric or similarity measure used to determine
the distance between two features. The SSD (sum of
the squared differences) and SAD (sum of the abso-
lute differences) are the most commonly used metrics.
This brings to mind several questions. First, under
what conditions should one use the SSD versus the
SAD? From a maximum likelihood perspective, it is
well known that the SSD is justified when the addi-
tive noise distribution is Gaussian. The SAD is justi-
fied when the additive noise distribution is Exponential
(double or two-sided exponential). Therefore, one can
determine which metric to use by checking if the real
noise distribution is closer to the Gaussian or the Expo-
nential. This leads to the second question: What dis-
tance measure do we use in comparing the real noise
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distribution to the best fit Gaussian or Exponential
distributions? This is not an easy question to answer
because the choice of the distance measure will bias the
comparison. Ideally, we would also like to use a max-
imum likelihood distance measure to compare the two
distributions. However, we would need to measure dis-
tributions from a statistically large number of datasets.
For example, to obtain one representative distribution,
7, we need a dataset which contains a statistically large
number of examples. To find a distribution of the vari-
ance of each element of 7, we would need a statistically
large number of datasets. In practice, the Chi-square
test is frequently used, and since we have not found a
better solution, we used it for comparing the distribu-
tions.

The common assumption is that the real noise dis-
tribution should fit either the Gaussian or the Expo-
nential, but what if this assumption is invalid? What
if there is another distribution which fits the real noise
distribution better than the Gaussian or the Exponen-
tial? It is precisely this question which we examined in
this paper. Toward answering this question, we have
endeavored to use international test sets and promising
algorithms from the color indexing and stereo matching
research literature.

Color indexing is one of the most prevalent retrieval
methods in content based image retrieval. Given a
query image, the goal is to retrieve all the images whose
color compositions are similar to the color composition
of the query image. Typically, the color content is de-
scribed using a histogram [15]. In general, color his-
tograms are computed and the histogram intersection
criterion is used to compare them. Hafner, et al. [8]
suggests the usage of a more sophisticated quadratic
form of distance measure, which tries to capture the
perceptual similarity between any two colors. In all of
these works, most of the attention has been focussed
on the color model with little or no consideration of
the noise models.

Stereo matching implies finding correspondences be-
tween two or more images. If these correspondences
can be found accurately and the camera geometry is



known, then a 3D model of the environment can be
reconstructed [2]. In [6], pixel correspondences are
found by adaptive, multi-window template matching.
The templates are compared using the SSD. Recent
research by [3] concluded that the SSD is sensitive to
outliers and therefore robust M-estimators should be
used regarding stereo matching. However, the authors
[3] did not consider metrics based on similarity distri-
butions. They considered ordinal metrics, where an
ordinal metric is based on relative ordering of inten-
sity values in windows - rank permutations. Cox, et
al. [5] presented a stereo algorithm which optimizes a
maximum likelihood cost function. This function as-
sumes that corresponding features in the left and right
images are normally distributed about a common true
value. However, the authors [5] noticed the normal
distribution assumption used to compare correspond-
ing intensity values is violated for some of their test
sets. They altered the stereo pair so that the noise
distribution would be closer to a Gaussian. In our ap-
proach, we attempt to find a better model for the real
noise distribution instead of altering the stereo pair.

Boie and Cox [4] consider a model of camera noise
comprised of stationary direction-dependent electronic
noises combined with fluctuations due to signal statis-
tics. These fluctuations enter as a multiplicative noise
and are non-stationary and vary over the scene. A
substantial simplification appears if the noise can be
modeled as Gaussian distributed and stationary. This
work is complementary to ours. They try to model the
imaging noise. We try to model the noise between two
images which are different due to varying orientation,
or printer noise.

Section 2 describes the mathematical support for
the maximum likelihood approach. The setup of our
experiments is given in Section 3. In Section 4 we ap-
ply the theoretical results from Section 2 to determine
the influence of the real noise model on the accuracy
of retrieval methods in color image databases. In Sec-
tion 5 we study the real noise model to be chosen in
stereo matching applications. Conclusions are given in
Section 6.

2. Maximum Likelihood Approach
Consider M image pairs (or more generally, feature
vectors) from the database (D): (z;,y;) € D, with

1 =1,---, M. The images in each pair were chosen to
be similar according to the ground truth (G):

Equation (1) can be further written as:
Ti = Yi + N, =1, M (2)

where n; represent the “noise” image obtained as the
difference between the other two images.

In this context, the similarity probability can be de-
fined: M
P(G) = [ [ {expl—p(@s, y)]} (3)
i=1
where function p is the negative logarithm of the prob-
ability density of the noise.

According to (3), we have to find the probability
density function of the noise which maximizes the sim-
ilarity probability: maximum likelihood estimate for
the noise distribution [11].

Taking the logarithm of (3) and using (2) we find
that we have to minimize the expression:

> p(ni) (4)

where n; = z; — y; and the operation “-” denotes the
difference between corresponding elements in the im-
ages or in their feature vectors.

To analyze the behavior of the estimate we take the
approach described in [9] based on the influence func-
tion. The influence function characterizes the bias that
a particular measurement has on the solution and is
proportional to the derivative, ¢, of the estimate:

dp(2)

b(z) = L (5)
In the case where the noise is Gaussian distributed:
Prob{z; — yi} ~ exp(—(zi — y:)?) (6)

then
pz) =2° Y(z) =2 (7)

If the errors are Exponential distributed, namely

Prob{z; — yi} ~ exp(—|z: — yi|) (8)
then,
Y(z) = sgn(z2) (9)

In this case, using (4), we minimize the mean abso-
lute deviation, rather than the mean square deviation.
Here the tails of the distribution, although exponen-
tially decreasing, are asymptotically much larger than
any corresponding Gaussian.

A distribution with even more extensive tails is the
Cauchy distribution,

1

Prob{z; —y:} ~ PEpy p— v}

(10)
where a is a parameter which determines the height
and the tails of the distribution.

This implies
z

2 2
p(z) =log(a” + 27) a2 422

P(z) =

For normally distributed errors, (7) says that the
more deviant the points, the greater the weight. By

(11)
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Figure 1. An overview of a similarity matching algorithm

contrast, when tails are somewhat more prominent,
then (9) says that all deviant points get the same rel-
ative weight, with only the sign information used. Fi-
nally, when the tail are even larger, (11) says ¢ in-
creases with deviation, then starts decreasing, so that
the true outliers are not counted at all.

The additive noise model in (2) is the dominant
model used in computer vision regarding maximum
likelihood estimate. For example, Haralick and Shapiro
[10] consider this model in defining the M-estimate: ...
of the form min ). p(2; —T}) is called an M-estimate.”
Note that the operation ”-” between the estimate (T%)
and the real data (z;) implies an additive model.

In summation, one can note that (7) resembles the
Ly metric, while (9) and (11) resemble the L; and L,
metrics, respectively. Thus, the maximum likelihood
approach gives a direct connection between the noise
distribution and the comparison metrics. If p is the
negative logarithm of the probability density of the
noise, then the corresponding metric is given by (4).
In practice, the probability density of the noise can be
estimated from the normalized histogram of the abso-
lute differences.

3. Experimental Setup

First, we assume that representative ground truth
is provided. The ground truth is split into two non-
overlapping sets: the training set and the test set as
shown in Figure 1. Note that L; is a notation for all
possible metrics that can be used, e.g. L1, La, L.. Sec-
ond, the training set is converted to a histogram which
is then normalized and denoted as the real noise distri-
bution. The Gaussian, Exponential, and Cauchy dis-
tributions are fitted to the real noise distribution. The
Chi-square test is used to find the fit between each of
the model distributions and the real distribution. We
select the model distribution which has the best fit and
its corresponding metric (L) is used in ranking. The
ranking is done using only the test set. For benchmark-
ing purposes in all of the experiments we compare our
results with the ones obtained using the Kullback rela-
tive information (K') [12]. We chose the Kullback rela-

tive information because it is the most frequently used
similarity measure in information theory. Furthermore,
Rissanen [14] showed that it serves as the foundation
for other minimum description length measures such as
Akaike’s [1] information criterion. Regarding the rela-
tionship between the Kullback relative information and
the maximum likelihood approach, Akaike [1] showed
that maximizing the expected log likelihood ratio in
maximum likelihood estimation is equivalent to maxi-
mizing the Kullback relative information.

It is important to note that for real applications, the
parameter in the Cauchy distribution is found when
fitting this distribution to the real distribution from
the training set. This parameter setting would be used
for the test set and any future comparisons in that
application.

For our image retrieval experiments we considered
the applications of color image retrieval in printer-
scanner copy location and object recognition by color
invariance. In the copy location application, the goal
is to find copies of an image taken from a magazine,
newspaper, or book. This task involves noise due to
the dithering patterns of the printer and scanner noise.
Furthermore, it is easy to verify that color printers do
not produce the same colors, brightness, or contrast as
the original. In object recognition, multiple pictures
are taken of a single object at different orientations.
Therefore, the correct match for an image is known by
the creator of the ground truth.

In stereo matching, the ground truth is typically
generated manually. A set of reference points are de-
fined in the images and then a person finds the corre-
spondences for the stereo pair.

In summary, our algorithm for choosing an analytic
metric can be described as follows:

Step 1 Compute the feature vectors from the training set

Step 2 Compute the real noise distribution from the dif-
ferences between corresponding elements of the feature
vectors

Step 3 Compare each of the model distributions to the
real noise distribution using the Chi-square test
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Figure 2. Noise distribution in the Corel database compared
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Step 3.1 For a parameterized metric such as L. com-
pute the value a of the parameter that minimizes
the Chi-square test

Step 4 Select the corresponding Lj of the best fit model
distribution

Step 4.1 Use the value a found from Step 3.1 in the
parameterized metrics

Step 5 Apply the Ly metric in ranking

As noted in the previous section, it is also possible to
create a metric based on the real noise distribution us-
ing maximum likelihood theory. Consequently, we de-
note the maximum likelihood (ML) metric as (4) where
p is the negative logarithm of the normalized histogram
of the absolute differences from the training set. Note
that the histogram of the absolute differences is nor-
malized to have area equal to one by dividing the his-
togram by the total number of examples in the training
set. This normalized histogram is our approximation
for the probability density function.

4. Similarity Noise in Color Indexing

Our formulation of the image retrieval problem is
as follows: Let D be an image database and Q be the
query image. Obtain a permutation of the images in D
based on Q, i.e assign rank(Z) € [|D]] for each Z € D,
using some notion of similarity to @. The problem is
usually solved by sorting the images Q' € D according
to [f(Q")—f(Q)|, where f(-) is a function computing
feature vectors of images and |- | is some distance mea-
sure defined on feature vectors.

We applied the theoretical results described in Sec-
tion 2 in two experiments. We determined the in-
fluence of the similarity noise model on finding sim-
ilar images which differ due to either printer-scanner
noise or change of viewpoint. We used two color image
databases. The first one was the Corel Photo database
and the second one consisted of 500 reference images
of domestic objects, tools, food cans, art artifacts, etc.

For benchmarking purposes in both experiments
with color databases we compared our results with the
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ones obtained using the quadratic distance measure
(Lq) proposed by Hafner, et al. [8].

The performance evaluation was formulated as fol-
lows: Let Q1,- -, Q, be the query images and for the i-
th query Q;, I(li), e ,157? be the images similar with Q;
according to the ground truth. The retrieval method
will return this set of answers with various ranks. As
an evaluation measure of the performance of the re-
trieval method we used recall vs. precision at different
scopes: For a query Q; and a scope s > 0, the recall r is
defined as |{I§-l)|rank(I§i)) < s}|/m, and the precision
p is defined as |{I§-l)\7‘ank(1’§-l)) < s}|/s.

4.1. Experiments with Noisy Copy Pairs

The first experiments were done using 8,200 im-
ages from the Corel database. We used this database
because it represents a widely used set of photos
by both amateur and professional graphical design-
ers. Furthermore, it is available on the Web at
http://www.corel.com.

Before we can measure the accuracy of particular
methods, we first had to find a challenging and objec-
tive ground truth for our tests. The idea of our exper-
iments was to measure the effectiveness of a retrieval
method when trying to find a copy of an image in a
magazine or newspaper. In order to create the ground
truth we printed 82 images using an Epson Stylus 800
color printer at 720 dots/inch and then scanned each
of them at 400 pixels/inch using an HP Ilci color scan-
ner. Note that we purposely chose a hard test set. The
query image is typically very different from the target
image. The copy pairs typically differ by color shifts,
quantization artifacts, and dithering noise.

We used the HSV color model and quantized H us-
ing 4 bits, S using 2 bits and V using 2 bits. The
first question we asked was, ”Which distribution is a
good approximation for the real color model noise?”
To answer this we needed to measure the noise with
respect to the color model. The real noise distribution
was obtained as the normalized histogram of differences
between the elements of color histograms correspond-



ing to copy-pair images from the training set (50 image
pairs).

In fitting the Exponential, Gaussian, and Cauchy
distributions to the real noise distribution, the Cauchy
had the best fit followed by the Exponential and then
the Gaussian as shown in Figure 2. Consequently, this
implies that the Cauchy metric should have the best
accuracy followed by the Exponential and Gaussian.
From the tests, as shown in Figure 3, it is clear that
L, gives a significant improvement in accuracy as com-
pared to Ly, L;, and L,. The Kullback relative in-
formation and L, give better accuracy than Ly or L.
Overall, the M L metric gives the best accuracy.

Another interesting performance evaluation is to dis-
play the percentage of correct copies found within the
top n matches. These results are shown in Table 1.

Top 20 40 100
L» 48.78 | 54.87 | 67.07
L, 62.19 | 68.29 | 84.14
L, 66.34 | 73.66 | 88.29
K 68.29 | 75.60 | 86.58
L.a=1.32 | 71.95 | 79.26 | 92.68
ML 75.60 | 82.92 | 96.34

Table 1. Retrieval accuracy in the Corel database
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Figure 3. Precision/Recall in Corel database; for L.,
a=1.32

4.2. Experiments with Object Recognition

In the second experiment we used a database con-
sisting of 500 images of color objects such as domestic
objects, tools, toys, food cans, etc. As ground truth we
used 48 images of 8 objects taken from different camera
viewpoints (6 images for a single object). For this ex-
periment we chose to implement a method designed for
indexing by color invariants. Our goal was to study the
influence of the similarity noise on the retrieval results.

Gevers, et al. [7] analyzed and evaluated various
color features for the purpose of image retrieval by
color-metric histogram matching under varying illu-
mination environments. They introduced a new color
model | and showed that it is invariant for both matte
and shiny surfaces:

_ (R—-G)*
ll(R’G’B)_(R G2+ (R—B)?+ (G- B)? (12)
(R-B)*
LGB = moar s R-BrrG-BE )
_ (G- B)?
l3(R,G,B)7(R G T (R_BP L@ _B): (14)

where R, G, B are the color values in the RGB color
space.

The authors [7] concluded that this color model is
the most appropriate color model to be used for image
retrieval by color-metric histogram matching under the
constraint of a white illumination source. This conclu-
sion was drawn using histogram intersection (L;) as
the comparison metric between the color histograms.

Precision Recall

Scope 5 10 25 5 10 25
Lo 0.425 | 0.258 | 0.128 | 0.425 | 0.517 | 0.642
Ly 0.45 | 0.271 | 0.135 | 0.45 | 0.542 | 0.675
L, 0.46 | 0.280 | 0.143 | 0.46 | 0.561 | 0.707
K 0.466 | 0.279 | 0.138 | 0.466 | 0.558 | 0.692
L. 0.525 | 0.296 | 0.146 | 0.525 | 0.592 | 0.733
ML 0.533 | 0.304 | 0.149 | 0.533 | 0.618 | 0.758

Table 2. Precision/Recall at various scopes for the color
objects database; for L., a=2.88
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Figure 5. Precision/Recall for the color objects database;
for L., a=2.88

Using 24 images with varying viewpoint as the train-
ing set, we calculated the real noise distribution and
studied the influence of different distance measures on
the retrieval results. We used the [ color model intro-
duced before and we quantized each color component
with 3 bits resulting in color histograms with 512 bins.

The Cauchy distribution was the best match for the
real noise distribution. The Exponential distribution
was a better match than the Gaussian (Figure 4). Ta-
ble 2 shows the precision and recall values at various
scopes. The results obtained with L. were consistently
better than the ones obtained with the other measures.
Figure 5 shows the precision-recall graphs. The curve
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corresponding to L. is above the others showing that
the method using L. is more effective. Note that the
Kullback relative information and L, perform better
than L, or L,.

In summary, L. performed better than the analytic
distance measures, and the M L metric performed best
overall. It is interesting that the Kullback relative in-
formation performed consistently better than the his-
togram intersection (L) metric, and roughly the same
as L.

5. Similarity Noise in Stereo Matching

Stereo matching is the process of finding correspon-
dences between entities in images with overlapping
scene content. The images are typically taken from
cameras at different viewpoints which implies that the
intensity of corresponding pixels may not be the same.

In the first experiments we used two standard stereo
data sets (Castle set and Tower set) provided by
Carnegie Mellon University. These datasets contain
multiple images of static scenes with accurate informa-
tion about object locations in 3D. The 3D locations are
given in X-Y-Z coordinates with a simple text descrip-
tion (at best accurate to 0.3 mm) and the correspond-
ing image coordinates (the ground truth) are provided
for all eleven images taken for each scene. For each
image there are provided 28 points as ground truth in
the Castle set and 18 points in the Tower set.

Let 71 and 7, represent intensities in two templates
i.e. there exist n tuples (Z3,Z%),---,(Z7,7%), n de-
pending on the size of the template used. The quan-
tity SSD = 3.7 | (Z} — Z4)? measures the squared Eu-
clidean distance between (Z1,Z2) and a value close to
zero indicates a strong match. The other metrics L,
and L. can be defined similarly.

In each image we considered the templates around
points which were given by the ground truth. We
wanted to find the model for the real noise distribution
which assured the best accuracy in finding the corre-
sponding templates in the other image. As a measure
of performance we computed the accuracy of finding

(b) Exponential

(c) Cauchy (a=2.88)

ared with the best fit Gaussian (a) (approximation error is O. 123),
est fit Cauchy (c) (approximation error is 0.077)

the corresponding points in the neighborhood of one
pixel around the points provided by the test set. In
searching for the corresponding pixel, we examined a
band of height 7 pixels and width equal to the image
dimension centered at the row coordinate of the pixel
provided by the test set.

In this application we used a template size of n=25,
i.e. a bxb window around the central point. For the
training sets, we placed templates around 10 points
which were obtained from the ground truth.

As one can see from Table 3 the Cauchy distribution
had the best fit to the real noise distribution relative to
L1 and L». Therefore, one expects the accuracy to be
the greatest when using L. (Table 4). In all cases the
results obtained with L, are the worst. Furthermore,
L. has the best accuracy relative to the other analytic
similarity measures for both test sets.

Set Gauss | Exponential | Cauchy
Castle | 0.0486 0.0286 0.0246
Tower | 0.049 0.045 0.043

Table 3. The approximation error for the corresponding
point noise distribution in stereo matching for three dis-
tribution models

Set Lo Ly K L. ML
Castle | 91.05 | 92.43 | 92.12 | 93.71 a=7.47 | 94.52
Tower | 91.11 | 93.32 | 92.84 | 94.26 a=5.23 | 95.07

Table 4. The accuracy of the template based stereo
matcher (%)

In addition, we investigated the influence of simi-
larity noise using two promising stereo algorithms and
another stereo pair from the research literature. Our
intention was to try other distance measures than SSD
(which was used in the original algorithms) in calcu-
lating the disparity map.

The first algorithm introduced by Fusiello, et al.
[6], is an adaptive, multi-window scheme using left-
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right consistency to compute disparity. For each pixel
the correlation with nine different windows (Figure 6)
is performed and the disparity with the smallest SSD
(L2) error value is retained. The authors conclude that
the adaptive, multi-window scheme clearly outperforms
fixed window schemes. Moreover, the left-right consis-
tency check proves to be effective in eliminating false
matches and identifying occluded regions.

The second algorithm we implemented and tested
was introduced by Cox, et al. [5]. Their algorithm
optimizes a maximum likelihood cost function. This
function assumes that corresponding features in the
left and right images are normally distributed about a
common true value and consists of a weighted squared
error term if two features are matched or a (fixed) cost
if a feature is determined to be occluded. Their idea
was to perform matching on the individual pixel in-
tensity, instead of using an adaptive window as in the
area-based correlation methods.

In order to evaluate the performance of the stereo
matching algorithms under difficult matching condi-
tions we also used the Robots stereo pair [13]. This
stereo pair is more difficult due to varying levels of
depth and occlusions (Figure 8). This fact is illustrated
in the shape of the real noise distribution (Figure 7).
Note that the distribution in this case has wider spread
and is less smooth. For this stereo pair, the ground
truth consisted of 1276 point pairs, given with one pixel
accuracy.

Consider a point in the left image given by the
ground truth. The displacement of the corresponding
point position in the right image is given by the dis-
parity map. The accuracy is given by the percentage
of pixels in the test set which are matched correctly by

(b) Exponential

(c) Cauchy (a=26.26)

ared with the best fit Gaussian (a) (approximation error is 0. 0267),
best fit Cauchy (c) (approximation error is 0.0147)

Figure 8. Robots stereo pair

the algorithm.

In Tables 5 and 6 the results using different dis-
tance measures are presented for Fusiello’s and Cox’s
algorithms, respectively. Using M L gave an improve-
ment in accuracy of 3 to 9 percent over the original
implementations which used Ly. Among the analytic
metrics, L. consistently had the best accuracy.

Set L2 L1 K Lc ML

Castle | 92.27 | 92.92 | 92.76 | 94.82 a=7.47 | 95.73

Tower | 91.79 | 93.67 | 93.14 | 95.28 a=5.23 | 96.05

Robots | 72.15 | 73.74 | 75.87 | 77.69 a=26.2 | 79.54

Table 5. Accuracy (%) using the multiple window stereo
algorithm (Fusiello)

Set Lo Ly K L. ML

Castle | 93.45 | 94.72 | 94.53 | 95.72 a=7.47 | 96.37

Tower | 93.18 | 95.07 | 94.74 | 96.18 a=5.23 | 97.04

Robots | 74.81 | 76.76 | 78.15 | 82.51 a=26.2 | 84.38

Table 6. Accuracy (%) using the maximum likelihood
stereo algorithm (Cox)



6. Discussion and Conclusions

In summary, we examined two topic areas from com-
puter vision which were content based retrieval and
stereo matching. Regarding content based retrieval,
the first application was finding copies of images which
had been printed and then scanned. For this appli-
cation we used the Corel stock photo database and a
color histogram method for finding the copies. The
second application dealt with object recognition using
color invariance. Both the ground truth and the algo-
rithm came from the work by Gevers, et al. [7]. Note
that in their work, they used the SAD metric. Further-
more, for both applications, we implemented Hafner’s
[8] quadratic perceptual similarity measure as a bench-
mark.

The second topic area we examined was stereo
matching. We implemented a template matching algo-
rithm, an adaptive, multi-window algorithm by Fusiello
[6], and a maximum likelihood method using pixel in-
tensities by Cox, et al. [5]. Note that the SSD was used
in the work by Fusiello [6] and in the work by Cox [5].

For both topic areas and applications in our experi-
ments, the M L metric consistently outperformed all of
the analytic metrics. Minimizing the M L metric is op-
timal with respect to maximizing the likelihood of the
difference between image elements when the real noise
distribution is representative. Therefore, the breaking
points occur when there is no ground truth, or when
the ground truth is not representative.

The first problem that this paper addresses is
whether the SSD is appropriate to use for computer vi-
sion applications in content based retrieval and stereo
matching. From our experiments, the SSD is typically
not justified because the real noise distribution is not
Gaussian.

There appear to be two methods of applying max-
imum likelihood toward improving the accuracy of
matching algorithms. The first method recommends
altering the images so that the measured noise distribu-
tion is closer to the Gaussian and then using the SSD.
The second method is to find a metric which has a dis-
tribution which is close to the real noise distribution.
Our experiments suggest that real noise distributions
can be modeled using the Cauchy distribution better
than with the Gaussian or Exponential. We used the
Chi-square test as the measure of fit between the distri-
butions, and found in our experiments that it served as
a reliable indicator for distribution selection. Further-
more, the Kullback relative information also appears to
be more accurate in our experiments than the SSD, but
not as accurate as the Cauchy metric. Either method
has the potential to improve the accuracy of a wide
range of vision algorithms (particularly those in which

the SSD or SAD are used).

Therefore, our main contributions are in showing
that the prevalent Gaussian distribution assumption is
often invalid, and in proposing the Cauchy metric as
an alternative to both the SAD and Kullback relative
information. In the case where representative ground
truth can be obtained for an application, we provided a
method for selecting the appropriate metric. Further-
more, we explained how to create a maximum likeli-
hood metric based on the real noise distribution, and
in our experiments we found that it consistently out-
performed all of the analytic metrics.

In future work we intend to examine the influence
of multi-parameter distributions towards achieving a
better fit to the real distribution.
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