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Abstract

In the research literature, maximum likelihood principles
were applied to stereo matching by altering the stereo pair
so that the difference would have a Gaussian distribution.
Here in this paper we present a novel method of applying
maximum likelihood to stereo matching. In our approach,
we measure the real noise distribution from a training set,
and then construct a new metric which we denote the max-
imum likelihood metric for comparing the stereo pair. The
maximum likelihood metric is optimal in the sense that it
maximizes the probability of similarity. In our experiments
and discussion, we compared the maximum likelihood met-
ric to other promising algorithms from the research liter-
ature using international stereo data sets. Furthermore,
we showed that the algorithms from the research literature
could be improved by using the maximum likelihood metric
instead of the sum of squared differences.

1. Introduction
The common assumption is that the real noise distribu-

tion should fit either the Gaussian or the Exponential, but
what if this assumption is invalid? What if there is another
distribution which fits the real noise distribution better than
the Gaussian or the Exponential? It is precisely this ques-
tion which we examined in this paper. Toward answering
this question, we have endeavored to use international test
sets and promising algorithms from the research literature.
Furthermore, one of the canonical measures of similarity
from the field of information theory, the Kullback relative
information, was also implemented and compared to the
metrics based on maximum likelihood.

Stereo matching implies finding correspondences be-
tween two or more images. If these correspondences can
be found accurately and the camera geometry is known,
then a 3D model of the environment can be reconstructed
[2]. Several algorithms have been developed to compute
the disparity between images, e.g. the correlation methods
[10] or correspondence methods [6]. In [5], pixel corre-
spondences are found by adaptive, multi-window template
matching. The templates are compared using the SSD. Re-
cent research by [3] concluded that the SSD is sensitive to
outliers and therefore robust M-estimators should be used
regarding stereo matching. However, the authors [3] did

not consider metrics based on similarity distributions. They
considered ordinal metrics, where an ordinal metric is based
on relative ordering of intensity values in windows - rank
permutations. Cox, et al. [4] presented a stereo algorithm
that optimizes a maximum likelihood cost function. This
function assumes that corresponding features in the left and
right images are normally distributed about a common true
value. However, the authors [4] noticed the normal distri-
bution assumption used to compare corresponding intensity
values is violated for some of their test sets. They altered
the stereo pair so that the noise distribution would be closer
to a Gaussian. In our approach, we attempt to find a better
model for the real noise distribution instead of altering the
stereo pair.

Section 2 describes the mathematical support for the
maximum likelihood approach. The setup of our experi-
ments is given in Section 3. In Section 4 we present and dis-
cuss our experiments using the maximum likelihood metric
in stereo matching applications. Conclusions are given in
Section 5.

2. Maximum Likelihood Approach
Consider M image pairs (or more generally, feature vec-

tors) from the database (D): �xi�yi��D, with i� 1� � � � �M
which according to the ground truth (G) are similar: xi�yi.
Considering ni as the “noise” image obtained as the differ-
ence between the other two images (xi and yi), the similarity
probability can be defined:

P�G� �
M

∏
i�1

fexp��ρ�ni��g (1)

where function ρ is the negative logarithm of the probability
density of the noise. According to (1) we have to find the
probability density function of the noise that maximizes the
similarity probability: maximum likelihood estimate for the
noise distribution [7]. Taking the logarithm of (1) it can be
shown (due to space limitations, we omitted the full proof)
that we have to minimize the expression:

M

∑
i�1

ρ�ni� (2)

Note that when the Exponential and Gaussian distribu-
tions are used in equation (2), we arrive at the L1 and L2

metrics, respectively. A distribution with more extensive



tails is the Cauchy distribution, and the corresponding met-
ric Lc is given by the expression:

Lc�X �Y � �
M

∑
i�1

log�a2 ��xi � yi�
2� (3)

where a is a parameter which determines the height and the
tails of the distribution.

For a general noise distribution, considering ρ as the neg-
ative logarithm of the probability density of the noise, the
corresponding metric is given by equation (2). In practice,
the probability density of the noise can be estimated from
the normalized histogram of the absolute differences.

3. Experimental Setup
The setup of our experiments was the following. First,

we assumed that representative ground truth was provided.
The ground truth was split into two non-overlapping sets:
the training set and the test set. Second, the training set
was converted to a histogram which was then normalized to
what we denoted the real noise distribution. The Gaussian,
Exponential, and Cauchy distributions were fitted to the real
distribution.

The Chi-square test was used to find the fit between each
of the model distributions and the real distribution. Why
was the Chi-square test used to find the fit between the
model distributions and the real distributions? We could
not use a maximum likelihood distance measure between
the distributions because the training set data was not suf-
ficient. We would need to accumulate training data over
thousands of applications instead of over thousands of ex-
amples within an application.

We selected the model distribution which had the best fit
and its corresponding metric (Ld) was used in ranking. Note
that Ld is a notation for all possible metrics that can be used,
e.g. L1, L2, Lc. The ranking is done using only the test set.
For benchmarking purposes in all of the experiments we
compared our results with the ones obtained using the Kull-
back relative information (K) [8]. We chose the Kullback
relative information because it is the most frequently used
information theoretic similarity measure. Furthermore, Ris-
sanen [11] showed that it serves as the foundation for other
minimum description length measures such as the Akaike’s
[1] information criterion. Regarding the relationship be-
tween the Kullback relative information and the maximum
likelihood approach, Akaike [1] showed that maximizing
the expected log likelihood ratio in maximum likelihood es-
timation is equivalent to maximizing the Kullback relative
information.

It is important to note that for real applications, the pa-
rameter in the Cauchy distribution is found when fitting this
distribution to the real distribution from the training set.
This parameter setting would be used for the test set and
any future comparisons in that application.

In stereo matching, the ground truth is typically gener-
ated manually. A set of reference points are defined in the

images and then a person finds the correspondences for the
stereo pair.

As noted in the previous section, it is also possible to
create a metric using the real noise distribution based on
maximum likelihood principles. Consequently, we denoted
the maximum likelihood (ML) metric as equation (2) where
ρ is the negative logarithm of the normalized histogram of
the absolute differences from the training set. Note that
the histogram of the absolute differences was normalized
to have area equal to one by dividing the histogram by the
total number of examples in the training set. This normal-
ized histogram was our approximation for the probability
density function.

4. Maximum Likelihood Stereo Matching

Stereo matching is the process of finding correspon-
dences between entities in images with overlapping scene
content. The images are typically taken from cameras at
different viewpoints which implies that the intensity of cor-
responding pixels may not be the same.

In the first experiments we used two standard stereo data
sets (Castle set and Tower set) provided by Carnegie Mellon
University. These datasets contain multiple images of static
scenes with accurate information about object locations in
3D. The 3D locations are given in X-Y-Z coordinates with
a simple text description (at best accurate to 0.3 mm) and
the corresponding image coordinates (the ground truth) are
provided for all eleven images taken for each scene. For
each image there are 28 points as ground truth in the Castle
set and 18 points in the Tower set. An example of two stereo
images from the Castle data set is given in Figure 1.

Figure 1. A stereo image pair from the Castle data set

Let I 1 and I 2 represent intensities in two templates
i.e. there exist n tuples �I 1

1�I 1
2�� � � � ��I

n
1�I n

2�, n depend-
ing on the size of the template used. The quantity SSD �

∑n
i�1�I i

1 � I i
2�

2 measures the squared Euclidean distance
between �I 1�I 2� and a value close to zero indicates a strong
match. The other metrics L1 and Lc can be defined similarly.

In each image we considered the templates around points
which were given by the ground truth. We wanted to find
the model for the real noise distribution which gave the best
accuracy in finding the corresponding templates in the other
image. As a measure of performance we computed the ac-
curacy of finding the corresponding points in the neighbor-
hood of one pixel around the points provided by the test set.
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Figure 2. Noise distribution in the stereo matcher using Castle data set

In searching for the corresponding pixel, we examined a
band of height 7 pixels and width equal to the image dimen-
sion centered at the row coordinate of the pixel provided by
the test set.

In this application we used a template size of n=25, i.e. a
5x5 window around the central point. For the training sets,
we placed templates around 10 points which were obtained
from the ground truth.

We present the real noise distribution in Figure 2. As one
can see from Table 1 the Cauchy distribution had the best fit
to the measured distribution relative to L1 and L2. There-
fore, one expects Lc to have greater accuracy (Table 2). In
all cases the results obtained with L2 are the worst.

In addition, we investigated the influence of similarity
noise using two stereo algorithms from the research litera-
ture. The first algorithm [5] is an adaptive, multi-window
scheme using left-right consistency to compute disparity.
For each pixel the correlation with nine different windows
(Figure 3) is performed and the disparity with the small-
est SSD (L2) error value is retained. The authors con-
clude that the adaptive, multi-window scheme clearly out-
performs fixed window schemes. Moreover, the left-right
consistency check proves to be effective in eliminating false
matches and identifying occluded regions.

Set Gauss Exponential Cauchy
Castle 0.0486 0.0286 0.0246
Tower 0.049 0.045 0.043

Table 1. The approximation error for the corresponding
point noise distribution in stereo matching

Set L2 L1 K Lc ML
Castle 91.05 92.43 92.12 93.71 a=7.47 94.52
Tower 91.11 93.32 92.84 94.26 a=5.23 95.07

Table 2. The accuracy of the template stereo matcher (%)

The second algorithm we implemented and tested was
introduced by Cox, et al. [4]. Their algorithm optimizes a
maximum likelihood cost function. This function assumes
that corresponding features in the left and right images are
normally distributed about a common true value and con-
sists of a weighted squared error term if two features are

matched or a (fixed) cost if a feature is determined to be oc-
cluded. Their interesting idea was to perform matching on
the individual pixel intensity, instead of using an adaptive
window as in the area-based correlation methods.

In order to evaluate the performance of the stereo match-
ing algorithms under difficult matching conditions we also
used the Robots stereo pair [9]. This stereo pair is more
difficult due to varying levels of depth and occlusions (Fig-
ure 4). For this stereo pair, the ground truth consists of 1276
point pairs, given with one pixel accuracy.

Figure 4. Robots stereo pair

In addition, we also used the two stereo datasets which
contain an aerial view of a suburban region. These were
taken from Stuttgart ISPRS Image Understanding datasets
and are referred to as the Flat and Suburb stereo data sets. In
Tables 3 and 4 the results using different distance measures
are presented. For all of the stereo sets, ML had the highest
accuracy. For the multiple window stereo algorithm, the ML
beat L2 by 2 to 7 percent. Even with the normalization in
Cox, et al. [4], the ML metric had improved accuracy over
the L2 metric of approximately 3 to 9 percent.

5. Conclusions and Discussion
We implemented a template matching algorithm, an

adaptive, multi-window algorithm by Fusiello, et al. [5],
and a maximum likelihood method using pixel intensities
by Cox, et al. [4]. Note that the SSD was used in the paper
by Fusiello, et al. [5] and in the work by Cox, et al. [4].
Furthermore, we used international stereo data sets from
Carnegie Mellon University(Castle and Tower), University
of Illinois at Urbana-Champaign (Robots) and University of
Stuttgart (Flat and Suburb).

From our experiments, it was clear that choosing the cor-
rect metric had significant impact on the accuracy. Specifi-



Figure 3. The nine asymmetric correlation windows in Fusiello’s algorithm

Set L2 L1 K Lc ML
Castle 92.27 92.92 92.76 94.82 a=7.47 95.73
Tower 91.79 93.67 93.14 95.28 a=5.23 96.05
Robots 72.15 73.74 75.87 77.69 a=26.2 79.54

Flat 78.43 77.92 77.76 76.82 a=17.17 80.69
Suburb 80.14 79.67 79.14 78.28 a=15.66 82.15

Table 3. The accuracy of Fusiello’s multiple window
stereo algorithm

Set L2 L1 K Lc ML
Castle 93.45 94.72 94.53 95.72 a=7.47 96.37
Tower 93.18 95.07 94.74 96.18 a=5.23 97.04
Robots 74.81 76.76 78.15 82.51 a=26.2 84.38

Flat 81.19 80.67 80.15 79.23 a=17.17 84.07
Suburb 82.07 81.53 80.97 80.01 a=15.66 86.18

Table 4. The accuracy of Cox’s maximum likelihood
stereo algorithm (with images normalized)

cally, among the L2, L1, Cauchy, and Kullback metrics, the
accuracy varied up to 7%.

One paradigm for choosing the correct metric is based on
maximum likelihood theory. Assuming that the probability
of similarity is based on the distribution of the difference be-
tween image elements, then it can be proven that a Gaussian
distribution results in the L2 metric, an Exponential distri-
bution results in the L1 metric, and a Cauchy distribution
results in the Lc metric. Therefore, it is also provable that
minimizing the L2 metric maximizes the probability of sim-
ilarity when the distribution is Gaussian. However, the dis-
tribution may not be Gaussian. In fact, none of the interna-
tional stereo data sets displayed Gaussian nor Exponential
distributions, but more Cauchy. However, even the Cauchy
distribution proved to be not a very good approximation.
Consequently, we introduced a novel metric which is based
directly on the real noise distribution, which we denoted the
maximum likelihood metric.

For the stereo pairs and the algorithms in our experi-
ments, the maximum likelihood metric consistently outper-
formed all of the other metrics. Furthermore, it is optimal
with respect to maximizing the probability of similarity.
The breaking points occur when there is no ground truth,
or when the ground truth is not representative.

There appear to be two methods of applying maximum
likelihood toward improving the accuracy of matching al-
gorithms. The first method recommends altering the images

so that the measured noise distribution is closer to the Gaus-
sian and then using the SSD. The second method is to find
a metric which has a distribution which is close to the real
noise distribution. Regarding the method of altering the im-
ages, our experiments indicate that this technique may have
varying accuracy depending on whether the resulting noise
distribution is Gaussian.

Our main contribution was showing how to create a max-
imum likelihood metric based on the real noise distribution.
Furthermore, our experiments suggested that for any stereo
matching algorithm which uses the SSD or SAD, it is pos-
sible (but not necessary) to increase the accuracy by using
the maximum likelihood metric if the real noise distribu-
tion is neither Gaussian nor Exponential. In the case where
there is minimal ground truth and an analytic metric must
be used, our experiments suggest that the method of alter-
ing the images and using the SSD gives good results. It
is noteworthy that in typical photogrammetry applications,
extensive ground truth is usually taken.

In future work we intend to examine the influence of
multi-parameter distributions towards achieving a better fit
to the real distribution.
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