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Abstract
The coarse-to-fine search strategy is extensively used in
current reported research.  However, it has the same
problems as any hill climbing algorithm, most
importantly, it often finds local instead of global minima.
Drawing upon the artificial intelligence literature, we
applied an optimal graph search, namely A*, to the
problem.  Using real stereo and video test sets, we
compared the A* method to both template and hill
climbing.  Our results show that A*  has greater accuracy
than the ubiquitous coarse-to-fine hill climbing pyramidal
search algorithm in both stereo matching and motion
tracking.

1.  Introduction

Stereo matching and motion tracking are two
important areas in computer vision which involve finding
correspondences in space (stereo) or time (motion/video).
Stereo matching is one of the most flexible and general
methods for recovering 3D structure, and is used in
human-computer interaction and 3D modeling
applications.   Motion tracking is particularly useful for
modeling elastic and rigid body motion.  Analysis of
facial gestures requires tracking points on the subject’s
face.  Furthermore, it is also typically used in video
analysis and compression.  In video analysis, the camera
motion can be extracted from the pixel motion within the
camera shot.  Also, in MPEG, inter-image compression is
achieved by finding similar blocks between sequential
images.

In order to accurately describe the stereo vision
process, we define some relevant terms.   L and R are two
intensity images of overlapping content.  Using a
perspective projection camera model, a 3D point, (X,Y,Z)

projects through the image planes of L and R at pixels
(xL,yL) and (xR,yR), respectively.
  A stereo matching algorithm typically involves the
following steps:

(1)  Find the correspondences between the stereo pair
(2)  Refine each correspondence to subpixel accuracy
(3)  Given the camera calibration, calculate the 3D

position of each correspondence
(4)  Reconstruct the surface given the 3D points

Correspondence based motion tracking is equivalent to
stereo matching in the case where the 3D world is static,
in which case the stereo baseline is the distance that the
camera moved.  In the stereo matching context, the most
important constraint is that the correspondences must lie
on the epipolar line.  In the motion estimation problem,
the epipolar constraint is not valid.  A typical heuristic is
that the motion is constrained to a local region around the
pixel position.

This paper focuses on the problem of automatically
finding correspondences using multi-scale or pyramidal
matching.  Significant previous work has been done in two
view pyramidal matching.  Beginning with Moravec[25]
in 1977, image pyramids were used to obtain logarithmic
computational efficiency in finding correspondences.  In
the 80s, the most relevant work was done by Hannah[5]
whose algorithm also used multi-scale pyramids in
conjunction with a hill climbing search algorithm.
Dyer[2] gives an excellent overview of multi-scale
methods as well as applications.  The interested reader is
referred to [1,4,5,6,7,9,17,18,20,22,23,24].  Recently,
there have been methods which examined the noise
distribution[12] and texture correlation[13].  Both of these
methods also used coarse to fine hill climbing search
algorithms.
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This paper shows that matching image pyramids is
equivalent to solving the minimum cost path problem for a
tree.  In Section 2, we briefly introduce and discuss multi-
scale matching followed by the relevance of A*[8,11],
which finds the optimal path unlike the hill climbing
method which can stop at local minima.  Section 3
describes our experiments and we give conclusions in
Section 4.

2. Multi-Scale Matching

What is an image pyramid?  An image pyramid is a
collection of copies of the original image at different
sizes.  These sizes represent varying levels of scale.  For
the purposes of this paper, we assume that the sizes of the
image copies are at powers of 2 (i.e. 1x1, 2x2, 4x4, 8x8,
etc.), which has also been called a 1:2 pyramid.  The
typical method is to blur the original image with a
Gaussian filter[15] and then subsample to create the lower
resolution level.  One of the important advantages of the
Gaussian method is that copies can be synthesized at any
scale factor due to the sigma parameter in the Gaussian
blurring.

2.1  Coarse-to-Fine Matching: An Example

The purpose of this example is to illustrate the
process of finding a pixel correspondence between two
images called L and R.  Also, let us assume that the
coordinates are described in (row, column, level) format
for L and R.  In the example shown in Figure 1, the
selected pixel in the left image is on level 2 which is
denoted as  L(2,0,2).  By definition, we also know that the
selected pixel also maps to left image level 1 at L(1,0,1).
The coarse-to-fine search process begins with an initial
match state at the coarsest level available, which in our
example is level 1.  This initial correspondence can be
found by either starting at the 1x1 level or using a
different search process to find the initial match state.  In
Figure 1,  assume that the initial match state in level 1
from the left to right image is [L(1,0,1) -> R(1,0,1)].
From R(1,0,1), there are 4 possible candidates in the right
image on level 2, namely, R(2,0,2), R(2,1,2), R(3,0,2),
and R(3,1,2).

In the case of stereo matching where images have
been rectified toward the epipolar constraint, then we can
eliminate R(3,0,2) and R(3,1,2), which is why they are
shown with dotted lines. The decision between R(2,0,2)
and R(2,1,2) is made by comparing the local error or cost,
C(L(2,0,2), R(2,0,2)); and C(L(2,0,2), R(2,1,2)).  For
simplicity sake, we can write the expression without L and
say we take the lesser of C(R(2,0,2)) and C(R(2,1,2)) as
the correspondence.

2.2  Pyramids and Trees

The pyramidal search problem is precisely a path
minimization problem in graph theory.  Each image
pyramid is a tree in which each pixel at level n has four
children at level n+1.  With the epipolar assumption, the
number of children is reduced to 2 at level n+1.  Let us
define the cost of traversing path R(a,b,n-1) to R(r,c,n)
relative to L(x,y,n) as C(R(r,c,n)) as shown in Figure 2.
Note that it is not necessary to specify R(a,b,n-1) since R
is a tree, which implies that R(r,c,n) can only have one
parent.  Furthermore, there is an implicit assumption that
C is comparing L(x,y,n) with R(r,c,n).  However, it is
redundant to  write L(x,y,n) because it is fixed relative to
the selected pixel in L.  In this framework, C is a binary
tree of depth N-1, where N is the number of levels in R.
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Figure 1.  The pyramidal matching process between
stereo images.  A is user selected. B is the projection of A
in the left pyramid.  M is the pixel which has the least
feature error to B.  M has four children M1, M2, M3, and M4,
which are candidates to match to A.  The child which has
the least error would be the correspondence of pixel A.

In the simplest coarse-to-fine matching algorithm, we
being at the 2x2 resolution, select the match with
minimum error, and propagate to 4x4, 8x8, etc.  This
algorithm is both intuitive and elegant and leads to
O(logN) time, where N is the resolution of the original
image.  Using such a method led to an accuracy of 0.51 on
the Stuttgart image[3,5,14] database.

Why was the coarse-to-fine accuracy so low?  The
problem was that the matching algorithm can make errors
in propagating the coarse scale match to a finer scale
match.  One solution is to begin the matching algorithm at
a finer scale level.  In the literature [5,9], 16x16 and
32x32 are often used as the initial scale level.

2.3  The  A* Graph Search Algorithm

How can we improve the accuracy?  To improve the
accuracy, we need to examine why the coarse-to-fine
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matching algorithm is failing.  On consideration of the
algorithm, we see that it is intrinsically a hill-climbing
algorithm.  It selects the minimum error path locally at
each node and does not keep track of other paths which
might lead to globally optimal solutions.  This means that
it is also prone to all of the faults of any hill climbing
algorithm, most importantly, it can stop at local minima.
How can we improve the matching algorithm?  By
applying a more sophisticated matching algorithm such as
A*[8,10,11], we can prove that we have found the global
minimum instead of just a local minimum with regard to
the total path traversal cost as shown in Figure 3.
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Figure 2.  Pyramidal search relating to graph search in
trees

A* finds the global
minimum cost pathHill Climbing only finds
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Figure 3.  Comparing Hill Climbing to A*

The A*[8,11] algorithm can be described as follows:

Step (1)  Initialize Q to a zero-length path that only
contains the root.

Step (2)  P = first path of Q
While (P is not a leaf)
begin

Step (3)  S = list of new paths created by children or
successors of P

Step (3.1)  Delete all new paths in S with loops
Step (4)  Calculate costs of new paths in S and append

to Q.
Step (4.1)  If two or more paths in Q reach a common

node, remove all paths except the one which reaches
the common node with the minimum cost.

Step (5)  Sort Q by the sum of the path cost and the
estimated cost to reach a leaf (heuristic)

Step (6)  P = first path of Q
end

These are some observations regarding the use of A* on
searching image pyramids.  Since the graph formed from
the image pyramids is a tree, it is not necessary to perform
Step (3.1) because trees are acyclic.  Step (4.1) is not
necessary because each child node only has only one
parent in a tree, which means that it is not possible for two
paths to reach a common child node.

It has been previously proven that if the heuristic is a
lower bound estimate on the actual distance then A*
produces globally optimal paths[8].  Therefore in step (5),
the estimated cost to reach a leaf from the current path is
set to zero in order to guarantee optimality.

Initialization of Q is to the root of the pyramid, which
is the coarsest scale level.  P is regarded as the current
best candidate.  If P is at the finest level, we have found
the minimum cost match and we STOP.   Otherwise, we
generate the children of P and the costs to reach the
children.  The children are the pixels at the next finer
image scale level, which contributed to the genesis of P in
creating the image pyramid.

3. Experiments

For the stereo matching tests, we used 4 stereo image
pairs: Poster, Rock Wall, Street, and Robot.  In each case
the query pixels in the left image were found
automatically by selecting only those pixels which had a
gradient magnitude of intensity greater than a threshold.
The ground truth correspondences in the right image were
found manually.  The poster image dataset of 8,216 query
pixels represents matching on a plane in 3D, with only the
perspective and lens distortion.  The Rock Wall stereo
dataset of 2,281 query pixels was from the difficult
category of the Stuttgart[3,5,14] standardized stereo
image set.  The Stuttgart standardized set had three levels
of matching difficulty: simple, moderate, and difficult, and
was the basis of a large comparative survey of stereo
matching methods[14] conducted by ISPRS Working
Group III/4. The Street stereo database of 439 query
pixels represents a street with pavement, trees, and grass.
This would be indicative of performance regarding
automatic highway/city mapping and computer based
automobile driving.  The Robot stereo database of 1,275
query pixels contains two industrial robot arms which
would be representative of construction or industrial
settings.

The goal of the motion tracking experiments was to
find the 2D pixel correspondences over a video sequence.
For the video motion tracking experiments we used four
video clips from two sources, namely, the movie, ”Four
Weddings and a Funeral” and the JonFace sequence from
University of Illinois[26]. The ground truth for “Four
Weddings and a Funeral” was obtained from Philips
Research, Eindhoven.  We used 3 clips (120 frames each,
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each frame with 256 manually marked pixels), which
involved (1) camera movement only (the initial shot of the
friends sleeping) (2) a moving vehicle (the friends driving
off to the mansion); and (3) multiple people moving (the
first wedding reception).

In the JonFace testset, the ground truth for the frame-
to-frame point matching was determined by placing
colored markers about 3 pixels in diameter on the
subject’s face, recording an image sequence, and using
correlation to find the positions of the marks.  For the
experiments, a method using thresholding and bilinear
interpolation was devised to remove the markers[26].  The
resulting sequence is composed of 20 frames.  Example
images in the Jonface sequence are shown in Figure 4.

Figure 4.  Four frames from the Jonface sequence.

3.1  Implementation

Implementation required choices of a feature class, a
feature metric, and a multiscale representation for use in
the hill climbing and A* algorithms.  Normalized intensity
was chosen as the feature class due to good results by
several researchers[19,20,21].  Recent work[16] has
indicated that from a maximum likelihood perspective, the
noise is closer to exponential than Gaussian in stereo
matching, which in turn suggests that the sum of the
absolute difference would be a better feature metric.

The multiscale representation was an image pyramid
generated by blurring the originals with a Gaussian and
then subsampling by a factor of 2, repeatedly until the
image copy was of size 2x2.   For both the A* and the hill
climbing search algorithms, we used 3x3 windows for the
comparisons.  The single scale template matcher used a
fixed window of size 9x9 on the finest scale level.  On a
Pentium 120 CPU computer, the time required to match
each pixel was between 0.001 and 0.014 seconds for the
hill climbing algorithm and less than 0.002 seconds for the
A* algorithm.

3.2  A Visual Example of Hill Climbing Versus A*

In this section we give a visual example of the
matching results between the hill climbing algorithm
versus A* for a standard stereo pair. The ground truth
correspondences for the Rock Wall stereo pair are shown
in Figure 5 and the accuracy (percentage of matches
within 1 pixel of the ground truth) results for the hill

climbing and A* algorithms are shown in Table 1.  Notice
that the hill climbing method peaks with an accuracy of 76
and that A* achieves 88 percent.  Figure 6 gives a visual
impression of the number and positions of the incorrect
matches from the hill climbing and A* algorithms.  The
ideal result would be a white image.

Figure 5.  Spatial positions of 2,281 ground truth
correspondences on the Rock Wall stereo pair shown as
crosses (we used crosses because pixels are sometimes
difficult to differentiate from the image itself on B/W
media).

(a) (b) (c)

(d) (e) (f)

(g) (h)
Figure 6.  Positions of incorrect matches in the right image
of the Rock Wall stereo pair using algorithms hill climbing
(HC) and A*.  HC with start level 4x4(a); 8x8(b); 16x16 (c);
32x32(d);  64x64(e); 128x128(f);  256x256(g); and A*(h).

3.3  Results from Stereo Matching Test Sets

The comparative results between the hill climbing,
A* algorithm and the template matcher algorithms are
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shown in Table 2. For these experiments, the template
matcher had a matching accuracy of 71.2%.  The hill
climbing method  reached a maximum accuracy of 80.6%
at starting level 32x32 while  A* had fewest mismatches
with an accuracy of 94.2% as shown in Table 2.

Table 1.  Accuracy For Hill Climbing(HC) And A* On The
Rock Wall Stereo Pair

Method Accuracy %
HC, Starting Scale 4x4 47
HC, Starting Scale 8x8 54
HC, Starting Scale 16x16 65
HC, Starting Scale 32x32 73
HC, Starting Scale 64x64 76
HC, Starting Scale 128x128 70
HC, Starting Scale 256x256 53
A* 88

Table 2.  Average Stereo Matching Accuracy For Hill
Climbing(HC) And A* On A Gaussian Pyramid

Method Accuracy %
(average)

HC, Starting Scale 4x4 29.3
HC, Starting Scale 8x8 48.6
HC, Starting Scale 16x16 62.0
HC, Starting Scale 32x32 80.6
HC, Starting Scale 64x64 78.2
HC, Starting Scale 128x128 76.3
HC, Starting Scale 256x256 59.6
Template: Template Size 9x9 71.2
A* 94.2

3.3  Results from the Motion Tracking Test Sets

Table 3 displays the results for the hill climbing
algorithm, template, and the A* algorithm in the area of
motion tracking.  Note that the hill climbing method peaks
at starting scale 64x64 as opposed to 32x32 in the stereo
matching test sets.  Furthermore, the template matching
method performed comparably with the hill climbing
method at the optimal starting scale.  The A* algorithm
had a matching accuracy of 92.7 as compared to the peak
accuracy of 84.2 for the hill climbing algorithm

3.4  Discussion

In this paper, we addressed the problem of finding
correspondences between stereo pairs.  We examined the
problem of matching image pyramids and showed that it
was equivalent to a minimum cost path problem from
graph theory.  Within this graph theory context, it was
observed that the traditional method of solving the

minimum cost path problem was equivalent to a hill
climbing search algorithm.  Hill climbing algorithms have
the important deficiency that they can stop at local
minima.  Drawing upon the artificial intelligence
literature, we applied an optimal graph search, namely A*,
to the problem.  

Table 3.  Average Motion Tracking Accuracy For Hill
Climbing(HC) And A* On A Gaussian Pyramid

Method Accuracy %
(average)

HC, Starting Scale 4x4 31.7
HC, Starting Scale 8x8 46.4
HC, Starting Scale 16x16 59.1
HC, Starting Scale 32x32 76.5
HC, Starting Scale 64x64 84.2
HC, Starting Scale 128x128 70.6
HC, Starting Scale 256x256 51.3
Template: Template Size 9x9 85.1
A* 92.7

From the experimental results,  A* clearly beats hill
climbing in accuracy and is comparable in computational
efficiency depending on the starting level for the hill
climbing method.

The first topic which we address is why A* had
consistently greater accuracy than hill climbing.  When
hill climbing makes a bad choice of directions in the
coarse to fine search, it can never backtrack no matter
how large the error becomes at the fine scale levels.  A* is
providing an automatic backtracking mechanism for
choosing a new direction at a coarser scale level if the
accumulated error is greater than another path.

Second, we discuss generality of the A* approach.
Specifically, is A* limited to the feature class, metric, or
pyramid representation used in these experiments?  In our
setup, the feature class and feature metric define the path
cost between levels in the pyramid.  This implies that any
feature class and metric could be utilized within the A*
algorithm.  Furthermore, A* can be used with other
pyramid representations such as Laplacian or averaging
pyramids.

Third, A* provides a general framework for the
inclusion of heuristics into the cost function.  Heuristics
allow the stereo matcher to be optimized for particular
applications and integrated with other kinds of knowledge.
For example, if we have performed apriori segmentation
on the images into constituent regions and know for each
region, the size, shape, color, and texture, then we can
bias the stereo matcher to favor regions having similar
size and shape, while penalizing regions which have
differing colors or textures.

1063-6919/99 $10.00 (c) 1999 IEEE



4.  Conclusions

In this paper, we examined the usage of a globally
optimal search algorithm, A*, versus the traditional hill
climbing algorithm.  The A* algorithm had significantly
greater accuracy than the hill climbing algorithm in both
stereo matching and motion tracking.

The A* refinement to the image pyramid matching
algorithm can be extended to any feature class, feature
metric or image pyramid representation.  In particular, we
think that most hierarchical computer vision algorithms or
significant parts therein could be reformulated as graphs
within a minimum cost path traversal context, and
therefore be solved using A* instead of hill climbing.

Future work will be focussed on integrating heuristics
from higher level primitives into the matching algorithms
for both stereo and motion.  The inclusion of these
primitives is already part of the framework of the A*
algorithm.
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