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ABSTRACT 
TOP-SURF is an image descriptor that combines interest points 
with visual words, resulting in a high performance yet compact 
descriptor that is designed with a wide range of content-based 
image retrieval applications in mind. TOP-SURF offers the 
flexibility to vary descriptor size and supports very fast image 
matching. In addition to the source code for the visual word 
extraction and comparisons, we also provide a high level API and 
very large pre-computed codebooks targeting web image content 
for both research and teaching purposes. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval, D.0 [Software]: General 

General Terms 
Algorithms, Design, Documentation, Experimentation. 

Keywords 
Content-based Image Retrieval, Interest Points, Visual Words, 
Bag-of-Words, Codebook, Open Source. 

1. INTRODUCTION 
In our world vision plays a very important role and computers are 
slowly catching up with the qualities of human vision. In the early 
days image descriptors were based on low-level features, such as 
colors and edges, but nowadays the descriptors are approaching 
image analysis from a higher level, resulting in image descriptors 
that are based on, for instance, salient details or image patches. 
Interest points are a specific kind of salient details, which describe 
locations in an image that are ‘interesting’ in a certain way. In this 
paper we present TOP-SURF, which is an image descriptor that 
combines interest points with visual words. It harnesses the high-
level qualities of interest points, while significantly reducing the 
memory needed to represent and compare images. Our visual 
word dictionaries (codebooks) are created by analyzing the 
interest points extracted from millions of web images. The TOP-
SURF descriptor is completely open source, which includes the 
libraries it depends on. Furthermore, the source code can be easily 
compiled and included in an existing project, or can be used in 
binary form where its functionality is available through an 
accessible API. 

Because TOP-SURF is based on SURF [1], we will first 
shortly introduce this image descriptor in Section 2, before 
discussing our descriptor in more detail in Section 3. Along the 
way we illustrate the differences in descriptor size, description 
time and matching time between both descriptors. We also 
compare the performance of both descriptors using a near-
duplicate detection scenario as a showcase. Finally, in Section 4 
we will describe the TOP-SURF API, open source licenses, 
documentation and other possible scenarios in which our 
descriptor would be useful. 

2. SURF 
SURF is one of the best interest point detectors and descriptors 
currently available. It has been shown to outperform the other 
well-known methods based on interest points SIFT [2] and GLOH 
[3]. 

2.1 Representing an image 
The SURF technique uses a Hessian matrix-based measure for the 
detection of interest points and a distribution of Haar wavelet 
responses within the interest point neighborhood as descriptor. An 
image is analyzed at several scales, so interest points can be 
extracted from both global (‘coarse’) and local (‘fine’) image 
details. Additionally, the dominant orientation of each of the 
interest points is determined to support rotation-invariant 
matching. An example image and its detected interest points are 
shown in Figure 1. 
 

 
Figure 1. Detected interest points in an image, including their 

orientation and scale. 
 

To determine the average number of extracted interest points 
per image, we used a collection of 100,000 images downloaded 
from the internet, which included logos, graphics, celebrity shots, 
stock photography and travel-related imagery. These images 
represent well what one would generally encounter when 
browsing on the internet, with the exception of small icons and 
banners that have been left out. These images have dimensions 
ranging between 83 and 640 pixels, with an average size of 
460x400. Yet, for extracting the interest points we resized all 
images to 256x256. 

We show the number of detected interest points for a selection 
of the images in Figure 2. The number of interest points found in 
an image ranged between 0 and 1057, and was on average 176 
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with a standard deviation of 85,3. It is thus certainly possible that 
no interest point is detected in an image at all, which can for 
instance occur when an image has a single color, although this 
does not happen frequently. Because each interest point is 
associated with a 64-element descriptor, the total descriptor size in 
our image sets thus ranges between 0KB and 270KB per image, 
with an average of roughly 45KB. On average 0.37s was required 
to extract the interest points from an image. The results were 
obtained using standard dual-core 2.4GHz workstation equipped 
with 3GB RAM. Note that more or less interest points can be 
detected when the images are resized to a different resolution than 
256x256. 

 

 
Figure 2. Number of interest points detected in the first 25,000 

images of the collection. 

2.2 Matching an image 
When enough interest points in the first image match with those in 
the second image the images are likely to depict the same scene or 
object(s). To determine these matches the authors of SURF use 
the nearest neighbor ratio matching technique [2]. Each interest 
point in the first image is compared to all interest points in the 
second image by calculating the Euclidean distance between their 
descriptors. A match is found between a point in the first image 
and a point in the second image if the distance between them is 
closer than 0.65 times the distance when any other point in the 
second image is considered. We used a separate set of query 
images, consisting of 100 travel-related photos, and matched them 
with all the 100,000 images. On average 12ms was required to 
match one query image with all the other images. We performed 
the matching on a quad-core 2.4GHz workstation equipped with 
8GB RAM in order to handle the large descriptor size. 
 

 
Figure 3. Examples of near-duplicate images: original image 

(left), framing (middle), overlaid text and logo (right) 
 

To determine the accuracy of the SURF descriptor, we created 
several near-duplicates of each of the 100 photos, similar to how 
we did this in earlier work [6]. These copies were compressed, 
scaled, framed, colorized or overlaid with text and a logo, see for 
example We embedded them in the collection of 100,000 images. 
When matching the original images with all images, ideally the 
copies would be ranked ahead of all other images. We used mean 
average precision (MAP) as the evaluation measure, which is 
calculated by first determining the average precision over all 
copies for each of the queries and then averaging these average 
precision values. For clarity, in our results we define precision as 
the number of copies found over the total number of images 
looked at. Our evaluation found that the MAP for SURF was 0.31. 

3. TOP-SURF 
When considering to find matches in collections containing 
millions of images it is clear that using the SURF method in its 
default form is storage-wise infeasible. One of our reasons for 
developing TOP-SURF was to overcome this issue by 
significantly reducing the descriptor size. 

3.1 Representing an image 
Several steps need to be performed in order to calculate the TOP-
SURF descriptor of an image. 

3.1.1 Representative interest points 
We used a large set of diverse training images consisting of 1 
million images downloaded from the internet, 1 million images 
downloaded from Flickr and 3000 land- and cityscape photos that 
we took ourselves. Our aim was to compose a general purpose 
imagery set that would be representative for the kind of images 
used by researchers and students in content-based image retrieval. 

For each of these images we extracted their SURF interest 
points and randomly chose 25 points. Because some of the images 
did not have much detail, it occasionally occurred that less than 25 
points were extracted and in those situations we used all of them. 
Due to limited amount of memory available we could not use all 
extracted points, and eventually settled on a collection containing 
33.5 million interest points. The time required to collect all these 
points was 120 hours. 

3.1.2 Clustering into visual words 
We devised an approach based on the bag-of-words technique of 
Philbin et al. [4] to group the collection of representative interest 
points into a number of clusters. Since each interest point can be 
considered a location in a 64-dimensional space, we can see this 
process as analyzing the locations of all 33.5 million interest 
points and gathering them into a certain number of groups. First, 
to find an initial location for each cluster we randomly and 
uniquely assigned it the location of one of the interest points. 
Then for each cluster we determined its 100 nearest neighbors, i.e. 
its closest interest points. If a point was close to multiple clusters 
we only assigned it to the cluster that it was closest to. We then 
updated each cluster to become the average of its current location 
and that of its nearest neighbors. To ensure stability of each of the 
clusters we performed this process 1000 times. Because 
discovering the exact nearest neighbors in such a high-
dimensional space is very time consuming, we used an 
approximate nearest neighbors technique based on a forest of 
randomized kd-trees [9] to speed up this process. 

Depending on the intended usage of our descriptor only a 
small number of clusters may be necessary, whereas in other 
instances a large number may be required. Therefore we clustered 
the interest points several times, choosing a different number of 
clusters that ranged from 10,000 to 500,000. The clustering 
process was done on a high-performance blade server and 
required 28GB RAM. In Figure 4 we show the time needed to 
cluster all these points into the varying numbers of clusters. 

The final clusters are commonly referred to as the visual word 
dictionary. Similar to a document consisting of textual words, an 
image can be interpreted as consisting of visual words. Since in a 
collection of documents some words appear more frequently than 
others it is likely that in a collection of images some visual words 
appear more often than others as well. In our situation, the aim is 
to emphasize the visual words that do not occur very frequently, 
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since they can be considered to be more special, or more 
descriptive, when they are found in an image. To assign the visual 
words weights for emphasis we incorporated a tf-idf weighting 
technique [5]. Our idf-weights were obtained by recalculating all 
the interest points of a subset of the 2 million training images and 
analyzing which of the visual words they would be associated 
with. 

 

 
Figure 4. Required time to cluster the collection of 

representative interest points into visual words. 

3.1.3 Selecting the most descriptive visual words 
Given a particular total number of available visual words, we can 
now calculate the TOP-SURF descriptor of an image. First we 
extract its regular SURF descriptor. We then convert the detected 
points into a frequency histogram of occurring visual words, by 
analyzing which visual word each interest point is most similar to. 
Next, we apply the tf-idf weighting to assign a score to all the 
visual words in the histogram. To form our image descriptor we 
finally select the highest scoring visual words. Because we only 
use the top ܰ visual words we thus named the descriptor TOP-
SURF. An illustration is shown in Figure 5. Note that our 
descriptor only requires 8 bytes per selected visual word. Storing 
a collection of 100,000 images would roughly require 4.5GB 
when using the SURF descriptor, however this would only require 
80MB with TOP-SURF when keeping the top 100 visual words, 
which is a reduction of more than 50 times. 
 

 
Figure 5. The histogram of the 25 highest scoring visual words 

of the image shown in Figure 1 when using a dictionary of 
200,000 visual words. 

 
Like we did with SURF in the previous section, we used the 

dual-core workstation – thus not the blade server – to calculate the 
TOP-SURF descriptors for all the 100,000 images. We did this (i) 
using the various dictionaries that contained 10,000-500,000 
visual words and (ii) using different numbers of selected highest 
scoring visual words that ranged from 10-200 in steps of 10. The 
time that was required to extract a TOP-SURF descriptor is on 
average 0,44s. Since the descriptor includes the calculation of the 
SURF interest points, which required 0,37s as we observed before 
in Section 2.1, the conversion of the interest points to their visual 
words and the extraction of the top ܰ points thus approximately 
took 0,07s. Note that the time needed to determine the top 10 
visual words is the same as determining the top 200, because all 
the visual words still have to be sorted on their scores. From the 
results we additionally observed that the time to extract our 

descriptor slightly increased from 0,42s to 0,46s as the dictionary 
got larger. 

3.2 Matching an image 
To compare the TOP-SURF descriptors of two images we 
determine the normalized cosine similarity ݀௖௢௦ between their tf-
idf histograms ஺ܶ and ஻ܶ 

 ݀௖௢௦ ൌ 1 െ  ஺ܶ · ஻ܶ| ஺ܶ| | ஻ܶ|  . (1) 

A distance of 0 means the descriptors are identical and a distance 
of 1 means they are completely different. Note that, by definition, 
comparisons with an image in which zero interest points have 
been detected will always result in a distance of 1, which is the 
desired behavior. To determine the matching time between TOP-
SURF descriptors, we used the same set of query images as before 
when we matched SURF descriptors. On average 0.2ms was 
needed to match one query image with all 100,000 test images. In 
comparison with SURF this is very fast, since only a small 
number of visual words need to be compared. In contrast, with 
SURF each interest point of a query image needs to be compared 
to the interest points of all other images, requiring much more 
time. We noticed that matching was slightly faster with 
descriptors that used only a small number of selected visual 
words. Matching was also faster as the dictionary size increased, 
because in this situation it is less likely for the visual words in two 
descriptors to exactly match, in which case these can be skipped 
and thus do not require further analysis. 

We performed the same near-duplicate image detection 
experiment as with SURF and our results are shown in Figure 6 
for various dictionary sizes. We can see that a larger dictionary 
yields a higher accuracy for small numbers of retained visual 
words. In this experiment, the dictionaries containing 100,000 
visual words and up gave virtually the same results. As the 
number of retained words increases, the performance goes up for 
all dictionaries and levels out at around a MAP of 0.96. Note that 
the TOP-SURF descriptor size is dependent on the number of 
visual words retained and not on the dictionary size. 

Overall, we can see that the TOP-SURF descriptor 
significantly outperforms the SURF descriptor when it comes to 
retrieval accuracy, descriptor size and matching time in the 
context of near-duplicate image detection. 
 

 
Figure 6. Mean average precision for various dictionary sizes 

varying from 10,000 to 400,000. 

4. SOURCE CODE 
The TOP-SURF descriptor is completely open source, although 
the libraries it depends on use different licenses. Because the 
original SURF descriptor is closed source, we used the open 
source alternative called OpenSURF [7], which is released under 
the GNU GPL version 3 license. OpenSURF itself is dependent 
on OpenCV [8] that is released under the BSD license. 
Furthermore, we used FLANN [9] for approximate nearest 
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neighbor matching, which is also released under the BSD license. 
To represent images we used CxImage (www.xdp.it/cximage.htm), 
which is released under the zlib license. Our own source code is 
released under a combination of the GNU GLP version 3 license 
and the Creative Commons Attribution version 3 license. All these 
licenses are compatible with each other. 

The source code of the TOP-SURF descriptor can be obtained 
from press.liacs.nl/researchdownloads/topsurf. On this page we 
have also posted documentation and instructions on how to 
include the library in your own projects. We additionally have 
provided binaries, samples and a graphical user interface. Because 
our visual word dictionaries can be quite large, they are offered as 
separate downloads. All deliverables are currently only offered for 
the Microsoft Windows platform, both for 32- and 64-bit systems. 
The source code is presented in a Microsoft Visual Studio 2008 
C++ project, although there is no reason to believe it cannot be 
converted to a project from earlier or later versions of Visual 
Studio. The code includes all the source code of the libraries it 
depends on for easy compilation. 

4.1 API 
Our descriptor API offers the following functions: 
 
• TopSurf_Initialize 

Initialize the library. 
• TopSurf_Terminate 

Terminate the library. 
• TopSurf_LoadDictionary 

Tell the library which visual words dictionary to use. 
• TopSurf_CreateDictionary 

Create a completely new visual words dictionary. 
• TopSurf_SaveDictionary 

Save a newly created dictionary to disk. 
• TopSurf_ExtractDescriptor 

Extract the descriptor of an image. 
• TopSurf_VisualizeDescriptor 

Display the locations of the detected visual words. 
• TopSurf_CompareDescriptors 

Compare two descriptors and return the distance between them, 
either using cosine normalized difference or absolute difference. 

• TopSurf_LoadDescriptor 
Load a descriptor from disk. 

• TopSurf_SaveDescriptor 
Save a descriptor to disk. 

• TopSurf_ReleaseDescriptor 
Release the memory used by a descriptor. 
 

The API only has to be used when accessing the TOP-SURF 
descriptor through a DLL. When the source code is added to a 
project there is naturally more control and freedom, since 
functions can be called directly. 

4.2 Benefits and uses 
For convenience, we allow the user to request all detected visual 
words in an image and not just the top few. In addition, we 
extended our descriptor to also include the locations where their 
original interest points were detected in the image. Both these 
options allow our descriptor to be used in a variety of situations. 
For example, an application can analyze the co-occurrence of 
particular visual words within an image and combine visual words 
into visual phrases, opening up possibilities for improved 

matching of objects and people. Because of its fast matching 
speed and low memory requirement the TOP-SURF descriptor is 
especially useful for mobile and embedded applications, since the 
devices they will run on are generally restricted by processing 
power and memory. 

Because our descriptor is easy to use and straightforward to 
integrate into projects, it is not only beneficial to researchers in 
the content-based image retrieval community, but also very 
suitable for use in student projects. Examples of student research 
projects at  our computer science department are developing new 
visual phrase and visual theme search methods based on the pre-
computed dictionaries, and automatic robotic navigation based on 
real time video input. 

5. CONCLUSIONS 
TOP-SURF is a high-performance image descriptor that can be 
used in a wide range of applications. It is not only very compact, 
i.e. using little memory, but also exhibits fast matching. Because 
the descriptor is completely open source, it has all the benefits that 
open source software provides, such as the freedom to modify and 
redistribute the code. In addition, we provide pre-computed visual 
word codebooks, making it easy to start using the descriptor. 
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