
TOP-SURF: A Visual Words Toolkit
Bart Thomee Erwin M. Bakker Michael S. Lew

LIACS Media Lab, Leiden University
Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

{bthomee, erwin, mlew}@liacs.nl

ABSTRACT
TOP-SURF is an image descriptor that combines interest points
with visual words, resulting in a high performance yet compact
descriptor that is designed with a wide range of content-based
image retrieval applications in mind. TOP-SURF offers the
flexibility to vary descriptor size and supports very fast image
matching. In addition to the source code for the visual word
extraction and comparisons, we also provide a high level API and
very large pre-computed codebooks targeting web image content
for both research and teaching purposes.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval, D.0 [Software]: General

General Terms
Algorithms, Design, Documentation, Experimentation.

Keywords
Content-based Image Retrieval, Interest Points, Visual Words,
Bag-of-Words, Codebook, Open Source.

1. INTRODUCTION
In our world vision plays a very important role and computers are
slowly catching up with the qualities of human vision. In the early
days image descriptors were based on low-level features, such as
colors and edges, but nowadays the descriptors are approaching
image analysis from a higher level, resulting in image descriptors
that are based on, for instance, salient details or image patches.
Interest points are a specific kind of salient details, which describe
locations in an image that are ‘interesting’ in a certain way. In this
paper we present TOP-SURF, which is an image descriptor that
combines interest points with visual words. It harnesses the high-
level qualities of interest points, while significantly reducing the
memory needed to represent and compare images. Our visual
word dictionaries (codebooks) are created by analyzing the
interest points extracted from millions of web images. The TOP-
SURF descriptor is completely open source, which includes the
libraries it depends on. Furthermore, the source code can be easily
compiled and included in an existing project, or can be used in
binary form where its functionality is available through an
accessible API.

Because TOP-SURF is based on SURF [1], we will first
shortly introduce this image descriptor in Section 2, before
discussing our descriptor in more detail in Section 3. Along the
way we illustrate the differences in descriptor size, description
time and matching time between both descriptors. We also
compare the performance of both descriptors using a near-
duplicate detection scenario as a showcase. Finally, in Section 4
we will describe the TOP-SURF API, open source licenses,
documentation and other possible scenarios in which our
descriptor would be useful.

2. SURF
SURF is one of the best interest point detectors and descriptors
currently available. It has been shown to outperform the other
well-known methods based on interest points SIFT [2] and GLOH
[3].

2.1 Representing an image
The SURF technique uses a Hessian matrix-based measure for the
detection of interest points and a distribution of Haar wavelet
responses within the interest point neighborhood as descriptor. An
image is analyzed at several scales, so interest points can be
extracted from both global (‘coarse’) and local (‘fine’) image
details. Additionally, the dominant orientation of each of the
interest points is determined to support rotation-invariant
matching. An example image and its detected interest points are
shown in Figure 1.

Figure 1. Detected interest points in an image, including their

orientation and scale.

To determine the average number of extracted interest points
per image, we used a collection of 100,000 images downloaded
from the internet, which included logos, graphics, celebrity shots,
stock photography and travel-related imagery. These images
represent well what one would generally encounter when
browsing on the internet, with the exception of small icons and
banners that have been left out. These images have dimensions
ranging between 83 and 640 pixels, with an average size of
460x400. Yet, for extracting the interest points we resized all
images to 256x256.

We show the number of detected interest points for a selection
of the images in Figure 2. The number of interest points found in
an image ranged between 0 and 1057, and was on average 176

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
MM’10, October 25–29, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-60558-933-6/10/10…$10.00.

with a standard deviation of 85,3. It is thus certainly possible that
no interest point is detected in an image at all, which can for
instance occur when an image has a single color, although this
does not happen frequently. Because each interest point is
associated with a 64-element descriptor, the total descriptor size in
our image sets thus ranges between 0KB and 270KB per image,
with an average of roughly 45KB. On average 0.37s was required
to extract the interest points from an image. The results were
obtained using standard dual-core 2.4GHz workstation equipped
with 3GB RAM. Note that more or less interest points can be
detected when the images are resized to a different resolution than
256x256.

Figure 2. Number of interest points detected in the first 25,000

images of the collection.

2.2 Matching an image
When enough interest points in the first image match with those in
the second image the images are likely to depict the same scene or
object(s). To determine these matches the authors of SURF use
the nearest neighbor ratio matching technique [2]. Each interest
point in the first image is compared to all interest points in the
second image by calculating the Euclidean distance between their
descriptors. A match is found between a point in the first image
and a point in the second image if the distance between them is
closer than 0.65 times the distance when any other point in the
second image is considered. We used a separate set of query
images, consisting of 100 travel-related photos, and matched them
with all the 100,000 images. On average 12ms was required to
match one query image with all the other images. We performed
the matching on a quad-core 2.4GHz workstation equipped with
8GB RAM in order to handle the large descriptor size.

Figure 3. Examples of near-duplicate images: original image

(left), framing (middle), overlaid text and logo (right)

To determine the accuracy of the SURF descriptor, we created
several near-duplicates of each of the 100 photos, similar to how
we did this in earlier work [6]. These copies were compressed,
scaled, framed, colorized or overlaid with text and a logo, see for
example We embedded them in the collection of 100,000 images.
When matching the original images with all images, ideally the
copies would be ranked ahead of all other images. We used mean
average precision (MAP) as the evaluation measure, which is
calculated by first determining the average precision over all
copies for each of the queries and then averaging these average
precision values. For clarity, in our results we define precision as
the number of copies found over the total number of images
looked at. Our evaluation found that the MAP for SURF was 0.31.

3. TOP-SURF
When considering to find matches in collections containing
millions of images it is clear that using the SURF method in its
default form is storage-wise infeasible. One of our reasons for
developing TOP-SURF was to overcome this issue by
significantly reducing the descriptor size.

3.1 Representing an image
Several steps need to be performed in order to calculate the TOP-
SURF descriptor of an image.

3.1.1 Representative interest points
We used a large set of diverse training images consisting of 1
million images downloaded from the internet, 1 million images
downloaded from Flickr and 3000 land- and cityscape photos that
we took ourselves. Our aim was to compose a general purpose
imagery set that would be representative for the kind of images
used by researchers and students in content-based image retrieval.

For each of these images we extracted their SURF interest
points and randomly chose 25 points. Because some of the images
did not have much detail, it occasionally occurred that less than 25
points were extracted and in those situations we used all of them.
Due to limited amount of memory available we could not use all
extracted points, and eventually settled on a collection containing
33.5 million interest points. The time required to collect all these
points was 120 hours.

3.1.2 Clustering into visual words
We devised an approach based on the bag-of-words technique of
Philbin et al. [4] to group the collection of representative interest
points into a number of clusters. Since each interest point can be
considered a location in a 64-dimensional space, we can see this
process as analyzing the locations of all 33.5 million interest
points and gathering them into a certain number of groups. First,
to find an initial location for each cluster we randomly and
uniquely assigned it the location of one of the interest points.
Then for each cluster we determined its 100 nearest neighbors, i.e.
its closest interest points. If a point was close to multiple clusters
we only assigned it to the cluster that it was closest to. We then
updated each cluster to become the average of its current location
and that of its nearest neighbors. To ensure stability of each of the
clusters we performed this process 1000 times. Because
discovering the exact nearest neighbors in such a high-
dimensional space is very time consuming, we used an
approximate nearest neighbors technique based on a forest of
randomized kd-trees [9] to speed up this process.

Depending on the intended usage of our descriptor only a
small number of clusters may be necessary, whereas in other
instances a large number may be required. Therefore we clustered
the interest points several times, choosing a different number of
clusters that ranged from 10,000 to 500,000. The clustering
process was done on a high-performance blade server and
required 28GB RAM. In Figure 4 we show the time needed to
cluster all these points into the varying numbers of clusters.

The final clusters are commonly referred to as the visual word
dictionary. Similar to a document consisting of textual words, an
image can be interpreted as consisting of visual words. Since in a
collection of documents some words appear more frequently than
others it is likely that in a collection of images some visual words
appear more often than others as well. In our situation, the aim is
to emphasize the visual words that do not occur very frequently,

0

200

400

600

800

1000

in
te

re
st

 p
oi

nt
s

since they can be considered to be more special, or more
descriptive, when they are found in an image. To assign the visual
words weights for emphasis we incorporated a tf-idf weighting
technique [5]. Our idf-weights were obtained by recalculating all
the interest points of a subset of the 2 million training images and
analyzing which of the visual words they would be associated
with.

Figure 4. Required time to cluster the collection of

representative interest points into visual words.

3.1.3 Selecting the most descriptive visual words
Given a particular total number of available visual words, we can
now calculate the TOP-SURF descriptor of an image. First we
extract its regular SURF descriptor. We then convert the detected
points into a frequency histogram of occurring visual words, by
analyzing which visual word each interest point is most similar to.
Next, we apply the tf-idf weighting to assign a score to all the
visual words in the histogram. To form our image descriptor we
finally select the highest scoring visual words. Because we only
use the top ܰ visual words we thus named the descriptor TOP-
SURF. An illustration is shown in Figure 5. Note that our
descriptor only requires 8 bytes per selected visual word. Storing
a collection of 100,000 images would roughly require 4.5GB
when using the SURF descriptor, however this would only require
80MB with TOP-SURF when keeping the top 100 visual words,
which is a reduction of more than 50 times.

Figure 5. The histogram of the 25 highest scoring visual words

of the image shown in Figure 1 when using a dictionary of
200,000 visual words.

Like we did with SURF in the previous section, we used the

dual-core workstation – thus not the blade server – to calculate the
TOP-SURF descriptors for all the 100,000 images. We did this (i)
using the various dictionaries that contained 10,000-500,000
visual words and (ii) using different numbers of selected highest
scoring visual words that ranged from 10-200 in steps of 10. The
time that was required to extract a TOP-SURF descriptor is on
average 0,44s. Since the descriptor includes the calculation of the
SURF interest points, which required 0,37s as we observed before
in Section 2.1, the conversion of the interest points to their visual
words and the extraction of the top ܰ points thus approximately
took 0,07s. Note that the time needed to determine the top 10
visual words is the same as determining the top 200, because all
the visual words still have to be sorted on their scores. From the
results we additionally observed that the time to extract our

descriptor slightly increased from 0,42s to 0,46s as the dictionary
got larger.

3.2 Matching an image
To compare the TOP-SURF descriptors of two images we
determine the normalized cosine similarity ݀௖௢௦ between their tf-
idf histograms ஺ܶ and ஻ܶ

 ݀௖௢௦ ൌ 1 െ ஺ܶ · ஻ܶ| ஺ܶ| | ஻ܶ| . (1)

A distance of 0 means the descriptors are identical and a distance
of 1 means they are completely different. Note that, by definition,
comparisons with an image in which zero interest points have
been detected will always result in a distance of 1, which is the
desired behavior. To determine the matching time between TOP-
SURF descriptors, we used the same set of query images as before
when we matched SURF descriptors. On average 0.2ms was
needed to match one query image with all 100,000 test images. In
comparison with SURF this is very fast, since only a small
number of visual words need to be compared. In contrast, with
SURF each interest point of a query image needs to be compared
to the interest points of all other images, requiring much more
time. We noticed that matching was slightly faster with
descriptors that used only a small number of selected visual
words. Matching was also faster as the dictionary size increased,
because in this situation it is less likely for the visual words in two
descriptors to exactly match, in which case these can be skipped
and thus do not require further analysis.

We performed the same near-duplicate image detection
experiment as with SURF and our results are shown in Figure 6
for various dictionary sizes. We can see that a larger dictionary
yields a higher accuracy for small numbers of retained visual
words. In this experiment, the dictionaries containing 100,000
visual words and up gave virtually the same results. As the
number of retained words increases, the performance goes up for
all dictionaries and levels out at around a MAP of 0.96. Note that
the TOP-SURF descriptor size is dependent on the number of
visual words retained and not on the dictionary size.

Overall, we can see that the TOP-SURF descriptor
significantly outperforms the SURF descriptor when it comes to
retrieval accuracy, descriptor size and matching time in the
context of near-duplicate image detection.

Figure 6. Mean average precision for various dictionary sizes

varying from 10,000 to 400,000.

4. SOURCE CODE
The TOP-SURF descriptor is completely open source, although
the libraries it depends on use different licenses. Because the
original SURF descriptor is closed source, we used the open
source alternative called OpenSURF [7], which is released under
the GNU GPL version 3 license. OpenSURF itself is dependent
on OpenCV [8] that is released under the BSD license.
Furthermore, we used FLANN [9] for approximate nearest

0

20

40

60

80

100

120

0 50000 100000 150000 200000 250000 300000 350000 400000 450000 500000

ti
m

e
in

 h
ou

rs

visual word clusters

0

0.05

0.1

0.15

0.2

23
51

24
45

51
47

78
36

19
36
2

21
63
5

35
00
8

38
20
1

41
00
4

51
91
2

51
91
9

53
80
1

66
51
2

71
86
7

76
34
5

10
44
04

11
19
33

11
25
13

12
74
19

12
74
49

13
14
89

13
71
62

14
45
87

14
92
29

16
23
91

tf
-id

f

visual word

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

M
A

P

number of retained visual words

10000 100000 200000 300000 400000

neighbor matching, which is also released under the BSD license.
To represent images we used CxImage (www.xdp.it/cximage.htm),
which is released under the zlib license. Our own source code is
released under a combination of the GNU GLP version 3 license
and the Creative Commons Attribution version 3 license. All these
licenses are compatible with each other.

The source code of the TOP-SURF descriptor can be obtained
from press.liacs.nl/researchdownloads/topsurf. On this page we
have also posted documentation and instructions on how to
include the library in your own projects. We additionally have
provided binaries, samples and a graphical user interface. Because
our visual word dictionaries can be quite large, they are offered as
separate downloads. All deliverables are currently only offered for
the Microsoft Windows platform, both for 32- and 64-bit systems.
The source code is presented in a Microsoft Visual Studio 2008
C++ project, although there is no reason to believe it cannot be
converted to a project from earlier or later versions of Visual
Studio. The code includes all the source code of the libraries it
depends on for easy compilation.

4.1 API
Our descriptor API offers the following functions:

• TopSurf_Initialize

Initialize the library.
• TopSurf_Terminate

Terminate the library.
• TopSurf_LoadDictionary

Tell the library which visual words dictionary to use.
• TopSurf_CreateDictionary

Create a completely new visual words dictionary.
• TopSurf_SaveDictionary

Save a newly created dictionary to disk.
• TopSurf_ExtractDescriptor

Extract the descriptor of an image.
• TopSurf_VisualizeDescriptor

Display the locations of the detected visual words.
• TopSurf_CompareDescriptors

Compare two descriptors and return the distance between them,
either using cosine normalized difference or absolute difference.

• TopSurf_LoadDescriptor
Load a descriptor from disk.

• TopSurf_SaveDescriptor
Save a descriptor to disk.

• TopSurf_ReleaseDescriptor
Release the memory used by a descriptor.

The API only has to be used when accessing the TOP-SURF
descriptor through a DLL. When the source code is added to a
project there is naturally more control and freedom, since
functions can be called directly.

4.2 Benefits and uses
For convenience, we allow the user to request all detected visual
words in an image and not just the top few. In addition, we
extended our descriptor to also include the locations where their
original interest points were detected in the image. Both these
options allow our descriptor to be used in a variety of situations.
For example, an application can analyze the co-occurrence of
particular visual words within an image and combine visual words
into visual phrases, opening up possibilities for improved

matching of objects and people. Because of its fast matching
speed and low memory requirement the TOP-SURF descriptor is
especially useful for mobile and embedded applications, since the
devices they will run on are generally restricted by processing
power and memory.

Because our descriptor is easy to use and straightforward to
integrate into projects, it is not only beneficial to researchers in
the content-based image retrieval community, but also very
suitable for use in student projects. Examples of student research
projects at our computer science department are developing new
visual phrase and visual theme search methods based on the pre-
computed dictionaries, and automatic robotic navigation based on
real time video input.

5. CONCLUSIONS
TOP-SURF is a high-performance image descriptor that can be
used in a wide range of applications. It is not only very compact,
i.e. using little memory, but also exhibits fast matching. Because
the descriptor is completely open source, it has all the benefits that
open source software provides, such as the freedom to modify and
redistribute the code. In addition, we provide pre-computed visual
word codebooks, making it easy to start using the descriptor.

6. ACKNOWLEDGMENTS
Leiden University and NWO BSIK/BRICKS supported this
research under grant #642.066.603. We would like to thank
Stephan Gammeter from the Computer Vision Laboratory at ETH
Zürich for his critical suggestions.

7. REFERENCES
[1] Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. 2008.

Speeded-up robust features (SURF). Computer Vision and
Image Understanding, 110(3), 346-359.

[2] Lowe, D.G. 2004. Distinctive image features from scale-
invariant keypoints. International Journal of Computer
Vision, 60(2), 91-110.

[3] Mikolajczyk, K., and Schmid, C. 2005. A performance
evaluation of local descriptors. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 27(10), 1615-
1630.

[4] Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman, A.
2007. Object retrieval with large vocabularies and fast spatial
matching. In Proceedings of the 2007 IEEE Conference on
Computer Vision and Pattern Recognition, 1-8.

[5] Salton, G., and McGill, M. 1983. Introduction to modern
information retrieval. McGraw-Hill.

[6] Thomee, B., Huiskes, M.J., Bakker, E.M., and Lew, M.S.
2008. Large scale image copy detection evaluation. In
Proceedings of the 10th ACM International Conference on
Multimedia Information Retrieval, 59-66.

[7] Evans, C. 2009. Notes on the OpenSURF library. Technical
report. University of Bristol.

[8] Bradski, G.R. 2000. The OpenCV library. Dr. Dobbs
Journal, 25(11), 120-126.

[9] Muja, M., and Lowe, D.G. 2009. Fast approximate nearest
neighbors with automatic algorithm configuration, in
Proceedings of the 2009 International Conference on
Computer Vision Theory and Applications, 331-340.

