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Toward Improved Ranking Metrics

Nicu Sebe, Michael S. Lew, Member, IEEE, and Dionysius P. Huijsmans

Abstract—In many computer vision algorithms, a metric or similarity measure is used to determine the distance between two features.
The Euclidean or SSD (sum of the squared differences) metric is prevalent and justified from a maximum likelihood perspective when
the additive noise distribution is Gaussian. Based on real noise distributions measured from international test sets, we have found that
the Gaussian noise distribution assumption is often invalid. This implies that other metrics, which have distributions closer to the real
noise distribution, should be used. In this paper, we consider three different applications: content-based retrieval in image databases,
stereo matching, and motion tracking. In each of them, we experiment with different modeling functions for the noise distribution and
compute the accuracy of the methods using the corresponding distance measures. In our experiments, we compared the SSD metric,
the SAD (sum of the absolute differences) metric, the Cauchy metric, and the Kullback relative information. For several algorithms from
the research literature which used the SSD or SAD, we showed that greater accuracy could be obtained by using the Cauchy metric

instead.

Index Terms—Maximum likelihood, ranking metrics, content-based retrieval, color indexing, stereo matching, motion tracking.

1 INTRODUCTION

T the core of many algorithms in computer vision is the

metric or similarity measure used to determine the
distance between two features. The SSD (sum of the
squared differences) and SAD (sum of the absolute
differences) are the most commonly used metrics. This
brings to mind several questions. First, under what
conditions should one use the SSD versus the SAD? From
a maximum likelihood perspective, it is well-known that the
SSD is justified when the additive noise distribution is
Gaussian. The SAD is justified when the additive noise
distribution is Exponential (double or two-sided exponen-
tial). Therefore, one can determine which metric to use by
checking if the real noise distribution is closer to the
Gaussian or the Exponential. This leads to the second
question: What distance measure do we use in comparing
the real noise distribution to the best fit Gaussian or
Exponential distributions? This is not an easy question to
answer because the choice of the distance measure will bias
the comparison. In practice, the Chi-square test is frequently
used and, since we have not found a better solution, we
used it for comparing the distributions.

The common assumption is that the real noise distribu-
tion should fit either the Gaussian or the Exponential, but
what if this assumption is invalid? What if there is another
distribution which fits the real noise distribution better than
the Gaussian or the Exponential? It is precisely this question
which we examine in this paper. Toward answering this
question, we have endeavored to use international test sets
and promising algorithms from the research literature.
Furthermore, one of the canonical measures of similarity
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from the field of information theory, the Kullback relative
information, was also implemented and compared to the
metrics based on maximum likelihood.

In general, image retrieval by content requires algo-
rithms for extracting and comparing features. Extracted
features from the imagery may be associated with entire
digital images, or perhaps with specific regions of interest
that are identified interactively, semiautomatically, or in a
completely automatic manner. The QBIC effort is one
project that has developed several methods for doing this.
For example, the authors of [7] represent the texture in an
image by a feature vector and compute the distance
between feature vectors using the SSD. Retrieval of similar
images is accomplished by finding the N database images
which have the shortest distance between feature vectors.
Another approach similar to QBIC is described in [28]. This
technique matches a pattern against equal-sized identically
oriented regions of a larger image and applies two criteria
that roughly correspond to the color and texture criteria of
QBIC. The authors consider the difference between the
pattern and the image in a particular relative position as
being the SSD between the pattern and the intensity image.

Color indexing is one of the most prevalent retrieval
methods in content-based image retrieval. Given a query
image, the goal is to retrieve all the images whose color
compositions are similar to the color composition of the
query image. Typically, the color content is described using
a histogram [29]. In general, color histograms are computed
and the histogram intersection criterion is used to compare
them. In [26], efficient techniques for comparing histograms
using quadratic measures of similarity have been proposed.
Hafner et al. [11] suggest the usage of a more sophisticated
quadratic form of distance measure which tries to capture
the perceptual similarity between any two colors. In all of
these works, most of the attention has been focused on the
color model with little or no consideration of the noise
models.

A method for calculating the similarity between two
digital images using a global signature which includes
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Fig. 1. Quadratic estimator. (a) Estimate and (b) «-function.
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Fig. 2. Exponential estimator. (a) Estimate and (b) v-function.
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Fig. 3. Cauchy estimator. (a) Estimate and (b) ¢-function.

texture, shape, and color content is described in [17] and
[19]. A normalized distance between probability density
functions of feature vectors is used to match signatures. The
authors present four possible distance measures that can be
used to compare signatures, without discussing how each
of these distances influences the retrieval results.

Stereo matching implies finding correspondences be-
tween two or more images. If these correspondences can be
found accurately and the camera geometry is known, then a
3D model of the environment can be reconstructed [23], [2].
Several algorithms have been developed to compute the
disparity between images, e.g., the correlation methods [22]
or correspondence methods [10]. In [8], pixel correspon-
dences are found by adaptive, multiwindow template
matching. The templates are compared using the SSD.
Recent research [3] concluded that the SSD is sensitive to
outliers and, therefore, robust M-estimators should be used
for stereo matching. However, the authors of [3] did not
consider metrics based on similarity distributions. They
considered ordinal metrics where an ordinal metric is based
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on relative ordering of intensity values in windows—rank
permutations. Cox et al. [6] presented a stereo algorithm
that optimizes a maximum likelihood cost function. This
function assumes that corresponding features in the left and
right images are normally distributed about a common true
value. However, the authors of [6] noticed that the normal
distribution assumption used to compare corresponding
intensity values is violated for some of their test sets. They
altered the stereo pair so that the noise distribution would
be closer to a Gaussian. In our approach, we attempt to find
a better model for the real noise distribution instead of
altering the stereo pair.

Boie and Cox [5] consider a model of camera noise
comprised of stationary direction-dependent electronic
noises combined with fluctuations due to signal statistics.
These fluctuations enter as a multiplicative noise and are
nonstationary and vary over the scene. A substantial
simplification appears if the noise can be modeled as
Gaussian distributed and stationary. This work is comple-
mentary to ours. They try to model the imaging noise. We
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Fig. 5. Two examples of copy pairs from LCPD.

try to model the noise between two images which are
different due to differing handling and storage conditions
of the original photographs, varying orientation, motion, or
printer noise.

Section 2 describes the mathematical support for the
maximum likelihood approach. The setup of our experi-
ments is given in Section 3. In Section 4, we apply the
theoretical results from Section 2 to determine the influence
of the real noise model on the accuracy of retrieval methods
in image databases. In Section 5, we study the real noise
model to be chosen in stereo matching applications. The
same approach is then applied on a video sequence in
Section 6. Conclusions are given in Section 7.

2 Maximum LIKELIHOOD APPROACH

Maximum likelihood theory [14], [12], [25] allows us to
relate a noise distribution to a metric. Specifically, if we are
given the noise distribution, then the metric which max-
imizes the similarity probability [27] is

M

=1
where n; represents the ith bin of the discretized noise
distribution and p is the maximum likelihood estimate of
the negative logarithm of the probability density of the
noise. In practice, the noise distribution is typically
represented by the difference between the corresponding
elements given by the ground truth.

To analyze the behavior of the estimate, we take the
approach described in [12] and [25] based on influence
function. The influence function characterizes the bias that a
particular measurement has on the solution and is propor-
tional to the derivative, v, of the estimate [4]:

_dp(2)
v =L, 2)
In case the noise is Gaussian distributed:
Prob{n;} ~ exp(—n;?), (3)
then
oD =2 Uz) == (4)

If the errors are distributed as a double or two-sided
exponential, namely

Prob{n;} ~ exp(— | n; |), (5)

then, by contrast,

p(2) =z ¥(2) = sgn(2). (6)

In this case, using (1), we minimize the mean absolute
deviation, rather than the mean square deviation. Here, the
tails of the distribution, although exponentially decreasing,
are asymptotically much larger than any corresponding
Gaussian.

A distribution with even more extensive—therefore,
sometimes even more realistic—tails is the Cauchy
distribution,

a

PT‘Ob{’I’Ll‘} ~ m,

(7)
where a is a parameter which determines the height and the
tails of the distribution.

This implies

s =toe(1+(3)) v —gis  ®

For normally distributed errors, (4) says that the more
deviant the points, the greater the weight (Fig. 1). By
contrast, when tails are somewhat more prominent, as in
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Fig. 6. Real noise distrbution in LCPD modeled by three theoretical distributions (the approximation error is: (a) Gauss 0.031, (b) Exponential 0.015,

and (c) Cauchy (a = 14.20) and 0.013).

(5), then (6) says that all deviant points get the same relative
weight, with only the sign information used (Fig. 2). Finally,
when the tail is even larger, (8) says that ¢ increases with
deviation then starts decreasing so that very deviant
points—the true outliers—are not counted at all (Fig. 3).

The estimates are plotted along with their t)-functions in
Figs. 1, 2, and 3.

The additive noise model is the dominant model used
in computer vision regarding maximum likelihood esti-
mate. Haralick and Shapiro [13] consider this model in
defining the M-estimate: “Any estimate 7}, defined by a
minimization problem of the form min} ), p(z; — T;) is
called an M-estimate.” Note that the operation “-”
between the estimate and the real data implies an
additive model.

In summation, one can note that (4) resembles the Lo
metric, while (6) and (8) resemble the L; and L. metrics,
respectively. Thus, maximum likelihood gives a direct con-
nection between the noise distribution and the comparison
metrics. Considering p as the negative logarithm of the
probability density of the noise, then the corresponding
metric is given by (1).

3 EXPERIMENTAL SETUP

The setup of our experiments is the following: First, we
assume that representative ground truth is provided. The
ground truth is split into two nonoverlapping sets: the
training set and the test set, as shown in Fig. 4. Note that
Ly, is a notation for all possible metrics that can be used,
e.g., Ly, Ly, L.. Second, the training set is converted to a
histogram which is then normalized to what we denote
the real noise distribution. The Gaussian, Exponential,
and Cauchy distributions are fitted to the real distribu-
tion. The Chi-square test is used to find the fit between
each of the model distributions and the real distribution.
We select the model distribution which has the best fit

TABLE 1
Similar Image Retrieval Performance in LCPD
Proj
Methods |—p——7 17 (Ja:14.2) K
F, 0.842 | 0.865 0.876 0.869
P, 0.875 | 0.879 0.881 0.879
Qr 0.737 | 0.761 0.772 0.764

and its corresponding metric (L) is used in ranking. The
ranking is done using only the test set.

For benchmarking purposes, we also investigate the
performance of other distance measures in matching. In all
of the experiments, we compare our results with the ones
obtained using the Kullback relative information (X) [20].
Let w and v be two discrete distributions, then

K:Zuilog%, 9)

where the sum is over all bins.

Note that the Kullback relative information is an
asymmetric similarity measure between normalized prob-
ability density functions. In content-based retrieval where
normalized histograms are used as feature vectors, K was
computed using (9), where u was the feature vector
corresponding to the query and v was the feature vector
corresponding to a candidate match. In stereo matching and
motion tracking where template matching is performed,
suppose we are searching for a match for an intensity
vector U from the left image. In the right image, there will
be many possible matching vectors and let V' be one of
them. Each of the intensity vectors are normalized to have
the sum equal to 1 by dividing each component by the total
intensity within the vector, i.e., u; = U;/ Y, U;. This results
in two normalized vectors v and v and (9) can be applied for
computing K.

We chose the Kullback relative information as a
benchmark because it is the most frequently used
information theoretic similarity measure. Furthermore,
Rissanen [24] showed that it serves as the foundation
for other minimum description length measures, such as
the Akaike’s [1] information criterion. Regarding the
relationship between the Kullback relative information
and the maximum likelihood approach, Akaike [1]
showed that maximizing the expected log likelihood ratio
in maximum likelihood estimation is equivalent to
maximizing the Kullback relative information. Another

or 0.76

Fig. 7. Retrieval quality in LCPD.
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Fig. 8. (a) Noise distribution in Corel database compared with the best fit Gaussian (approximation error is 0.106), (b) best fit Exponential
(approximation error is 0.082), and (c) best fit Cauchy (approximation error is 0.068).

interesting aspect of using the Kullback relative informa-
tion as a benchmark is that it gives an example of using a
logarithmically weighted function, instead of w-v, it is
computing a weighted version of logu — logv = log(u/v).

It is important to note that, for real applications, the
parameter in the Cauchy distribution is found when fitting
this distribution to the real distribution. This parameter
setting would be used for the test set and any future
comparisons in that application. The parameter setting can
be generalized beyond the ground truth if the ground truth
is representative.

For our image retrieval experiments, we considered the
applications of image retrieval in a black and white image
database, printer-scanner copy location, and object recogni-
tion by color invariance. In the first experiment, the images
have varying kinds of degradation due to different storage
conditions, scratches, and writings on the images. In the
printer-scanner application, an image is printed to paper
and then scanned back into the computer. This task
involves noise due to the dithering patterns of the printer
and scanner noise. In object recognition, multiple pictures
are taken of a single object at different orientations.
Therefore, the correct match for an image is known by the
creator of the ground truth.

In stereo matching and motion tracking, the ground truth
is typically generated manually. A set of reference points
are defined in the images and then a person finds the
correspondences for the stereo pair or video sequence.

In summary, our algorithm can be described as follows:

Step 1. Compute the feature vectors from the training set.

Step 2. Compute the real noise distribution from the
differences between corresponding elements of the
feature vectors.

Step 3. Compare each of the model distributions M to the
real noise distribution R using the Chi-square test

XQ:ZM

S (10)

i
where the sum is over all bins.
Step 3.1. For a parameterized metric such as L, compute the

value a of the parameter that minimizes the Chi-square
test.

Step 4. Select the corresponding L; of the best fit model
distribution.

Step 4.1. Use the value a found from Step 3.1 in the
parameterized metrics.

Step 5. Apply the L; metric in ranking.

4 SIMILARITY NOISE IN IMAGE DATABASES

The image retrieval problem is the following: Let D be an
image database and Q be the query image. Obtain a
permutation of the images in D based on Q, i.e., assign
rank(Z) € [| D[] for each Z € D, using some notion of
similarity to Q. The problem is usually solved by sorting
the images Q' € D according to | f(Q') — f(Q) |, where f(-)
is a function computing feature vectors of images and | - | is
some distance measure defined on feature vectors.

One of the problems with query information retrieval
systems is that the result of a query is simply a group of
items that are hopefully interesting to the user (a group of
images that are similar to the query image). Some additional
information, such as similarity scores produced by the
comparison process, might also be returned to allow a user
to gauge the correctness of the result. It is therefore
reasonable for a user to pose a question such as, “Why do
these images look similar?” Using a probability density
function approach, one can give an objective answer to this
question [18].

We applied the theoretical results described in Section 2
in two experiments. First, we determined the influence of
the similarity noise model on the similar image retrieval
performance in a black and white image database: the
Leiden 19th Century Portrait Database (LCPD). Second, in
order to have a broader range of test data, we used two
color image databases. The first one was the Corel Photo
database and the second one consisted of 500 reference
images of domestic objects, tools, toys, food cans, art
artifacts, etc.

acc (%)

Fig. 9. Retrieval accuracy in Corel database for the top 100; for L.,
a=4.32.
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TABLE 2
Recall/Precision vs. Scope for Color Objects Database
Methods Precision Recall
Scope 5 10 25 5 10 25
Ly 0.425 | 0.2583 | 0.1283 | 0.425 | 0.5166 | 0.6416
Ly 0.45 | 0.2708 | 0.135 0.45 | 0.5416 | 0.675
K 0.466 | 0.2791 | 0.1383 | 0.466 | 0.5583 | 0.6916
L. (a=7.5) | 0.525 | 0.2958 | 0.146 | 0.525 | 0.5916 | 0.733

4.1 Experiments Using LCPD

The LCPD is currently composed of 16,384 images taken
during the 19th century and will be continually expanded
until at least 50,000 images are in the database. Some images
are copies of each other. However, due to different storage
conditions, the copies have varying kinds and differing
amounts of degradation. The degradation varies from
intensity and moisture damage to scratches and writing
on the images, as shown in Fig. 5.

Our ground truth consisted of 292 copy pairs. We used
100 image pairs from the ground truth as the training set
and then calculated the real noise distribution as the
normalized histogram of differences between correspond-
ing image elements. In the next step, we compared the real
distribution with each of the known distributions: Gaussian,
Exponential, and Cauchy. Furthermore, for each of the 192
copy pairs in the test set, we queried the database using the
corresponding metric and inspected how it affected the
retrieval results.

For comparing the retrieval results, we used the
performance measures given in [16]. We wanted the
performance measures to be some function of the database
size. Therefore, we chose a visible window size of length
L = [log, n], with n = database size, which ensures a reason-
able number of images displayed to the user. This means
that, for our present database size of 16,384 images, the
number of displayed images was 14. For a database
consisting of 1 million images, no more than 20 images
would have to be shown.

Let T' represent the total number of test pairs and T;, be
the number of copies which appear in the top L = [log, n]
ranks. The visible fraction (F}) is defined as the fraction of
correct copies seen by the user,

F,

=T,/T (11)

and is normalized to lie within [0, 1]. F,, indicates how often
copies can be found in the first view shown after a search
has been specified.

A second performance measure is the visible position
(P,) which is defined as the ranking accuracy within the
display window.

Py=(L—-Ry,)/(L—-1), (12)

where R, is the average rank for visible test-pairs. P, lies
within [0, 1]: 0 when R, = L and 1 when R, = 1 (all visible
test-pairs on top). P, acts as a fine tuning measure within
the display window. This measure is mainly used to
discriminate between methods that have the same number

of test-pairs visible (they have the same F,). Consider, for
example, that two methods have all test-pairs visible
(F, =1), but one has the average rank in the display
window (R,) smaller than the other, meaning that its P, is
greater. In this case, P, indicates that this method performs
better than the other.

Finally, as a global measure, we used the combined
retrieval quality Q),:

In the LCPD experiments, we used the projection
features introduced in [15]. This feature proved to be one
of the best features for copy location. We used average row-
and column intensity values (line integrals) as a feature
vector.

In Fig. 6, we displayed the real noise distribution (with
dots) along with the three distributions. The approximation
error between the real noise distribution and each of the
known distributions was calculated using a Chi-square test.

The tails of the real distribution are prominent, so the
Gaussian distribution cannot be a good match. Instead, the
Exponential and Cauchy distributions are more suitable as
approximations. These observations are in accordance with
the theory described in Section 2. Therefore, one expects to
obtain better overall retrieval results using L. or L; than
using L, which is corroborated by the experiments in
Table 1. The retrieval quality obtained with L; and L. is
significantly greater than the one obtained with L,. Note
that the Kullback relative information performs better than
L, and L, but worse than L..

The influence of the parameter a in the retrieval quality is
shown in Fig. 7. For a wide scale of values for a, the results
using L, are better than the ones using L,. Furthermore,
around the optimum value of the parameter, the results are
better than the ones obtained using L; or K. It should be
noted that our method for finding the parameter a is only
effective when representative ground truth is available.

Precision

Recall

Fig. 10. Precision/Recall for color objects database; for L., a = 4.32.
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Fig. 11. A stereo image pair from the Castle data set.
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Fig. 12. Noise distribution in the stereo matcher using the Castle dataset. (a) Gauss, (b) Exponential, and (c) Cauchy (a = 7.47).

4.2 Experiments with Color Databases

The first experiments were done using 11,000 images from
the Corel database. We used this database because it
represents a widely used set of photos by both amateur
and professional graphic designers. Furthermore, it is
available on the Web at http:/ /www.corel.com.

Before we can measure the accuracy of particular
methods, we first have to find a challenging and objective
ground truth for our tests. The idea of our experiments was
to measure the effectiveness of a retrieval method when
trying to find a copy of an image in a magazine or
newspaper. In order to create the ground truth, we printed
110 images using an Epson Stylus 800 color printer at
720 dots per inch and then scanned each of them at 400
pixels per inch using an HP Ilci color scanner. Note that we
purposely chose a hard test set. The query image is typically
very different from the target image. The copy pairs
typically differ by color shifts, quantization artifacts, and
dithering noise.

We used the HSV color model and quantized H using
four bits, S using two bits, and V using two bits. The first
question we asked was, “Which distribution is a good
approximation for the real color model noise?” To answer
this, we needed to measure the noise with respect to the
color model. The real noise distribution was obtained as the
normalized histogram of differences between the elements
of color histograms corresponding to copy-pair images from
the training set (50 image pairs).

TABLE 3
The Approximation Error for the Corresponding Point Noise
Distribution in Stereo Matching for Three Distribution Models

‘ Image set | Gauss | Exponential | Cauchy
‘ Castle | 0.0486 0.0286 0.0246
| Tower | 0.049 0.045 0.043

The best fit Exponential had a better fit to the noise
distribution than the Gaussian (Fig. 8). Consequently, this
implies that L; should have better retrieval accuracy than
Ly. The Cauchy distribution is the best fit overall and the
results obtained with L. reflect this. For the retrieval
accuracy, we chose to display the percentage of correct
copies found within the top n matches. From the tests, as
shown in Fig. 9, it is clear that L. gives a significant
improvement in retrieval accuracy as compared to L, and
L;. The Kullback relative information gives slightly better
results than L, or L;. Note that we could have simplified
the test by reducing the size of the database from
11,000 images to 1,100 images, but then the differences
between the distance measures might not have been
apparent.

In the second experiment, we used a database consisting
of 500 images of domestic objects, tools, toys, food cans, etc.
As ground truth, we used 48 images of eight objects taken
from different camera viewpoints (six images for a single
object). For this experiment, we chose to implement a
method designed for indexing by color invariants. Our goal
was to study the influence of the similarity noise on the
retrieval results.

Gevers and Smeulders [9] analyzed and evaluated
various color features for the purpose of image retrieval
by color-metric histogram matching under varying illumi-
nation environments. They introduced a new color model [

TABLE 4
The Accuracy (Percent) of the Stereo Matcher
Using Template Matching

Image set Lo Ly K L.
Castle 91.05 | 92.43 | 92.12 | 93.71 (a=7.47)
Tower 91.11 | 93.32 | 92.84 | 94.26 (a=5.23)
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Fig. 13. The accuracy of the stereo matcher. (a) Castle dataset and (b) Tower dataset.
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and showed that it is invariant for both matte and shiny
surfaces:

L(R.G,B) = _(R-G) I
(R—G)*+(R-B)’+ (G- B)

L(R,G,B) = 3 St B)z 3 (15)
(R—G)"+(R—B)"+ (G- B)

Is(R,G, B) = (G- B (16)

" (R-G)’+(R-B)’+(G-B)"
where R, G, B are the color values in the RG B color space.

The authors of [9] concluded that this color model is the
most appropriate color model to be used for image retrieval
by color-metric histogram matching under the constraint of
a white illumination source. This conclusion was drawn
using histogram intersection (L) as the comparison metric
between the color histograms.

Using 24 images with varying viewpoint as the training
set, we calculated the real noise distribution and studied the
influence of different distance measures on the retrieval
results. We used the [ color model introduced before and we
quantized each color component with three bits, resulting in
color histograms with 512 bins. The problem is formulated
as follows: Let Q,,---, Q, be the query images and for the
ith query Q,, I(li), -+, be the images similar with Q;
according to the ground truth. The retrieval method will
return this set of answers with various ranks. As an
evaluation measure of the performance of the retrieval
method, we used recall vs. precision at different scopes: For
a query Q; and a scope s >0, the recall r is defined as
| {Z () | rank(Z @) < s} | /m and the precision p is defined as
| {zﬁ?) | rank(Z\)) < s} | /s.

The Cauchy distribution was the best match for the
measured noise distribution. The Exponential distribution
was a better match than the Gaussian. Table 2 shows the
precision and recall values at various scopes. The results
obtained with L. were consistently better than the ones
obtained with the other measures.

Fig. 10 shows the precision-recall graphs. The curve
corresponding to L. is above the others, showing that the
method using L. is more effective. Note that the Kullback
relative information performs better than L; or L,.

In summary, L. performed better than all of the other
measures. It is interesting that the Kullback relative
information performs consistently better than the well-
known histogram intersection (L;).

5 SIMILARITY NOISE IN STEREO MATCHING
APPLICATIONS

Stereo matching is the process of finding correspondences
between entities in images with overlapping scene content.
The images are typically taken from cameras at different
viewpoints, which implies that the intensity of correspond-
ing pixels may not be the same.

In the first experiments, we used two standard stereo data
sets (Castle set and Tower set) provided by Carnegie Mellon
University. These datasets contain multiple images of static
scenes with accurate information about object locations in 3D.
The images were taken with a scientific camera in an indoor
setting at the Calibrated Imaging Laboratory at CMU. The
3D locations are given in X-Y-Z coordinates with a simple text
description (at best accurate to 0.3 mm) and the correspond-
ing image coordinates (the ground truth) are provided for all
eleven images taken for each scene. For each image, there are
provided 28 points as ground truth in the Castle set and
18 points in the Tower set. An example of two stereo images
from the Castle data set is given in Fig. 11.

Fig. 15. ROBOTS stereo pair.
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Fig. 16. (a) Noise distribution for the ROBOTS stereo pair compared with the best fit Gaussian (approximation error is 0.0267), (b) best fit
Exponential (approxiamtion error if 0.0156), and (c) best fit Cauchy (approximation error is 0.0147).

Let Z; and 7, represent intensities in two templates i.e.,
there exist n tuples (Z1,Z3), -+, (Z%,Z%), n depending on
the size of the template used. The quantity
n
SSD = (T} - T})* (17)

=1
measures the squared Euclidean distance (L2) between
(Z1,Z5) and a value close to zero indicates a strong match.
The other metrics L; and L. can be defined similarly.

In each image, we considered the templates around
points which were given by the ground truth. We wanted to
find the model for the real noise distribution which assured
the best accuracy in finding the corresponding templates in
the other image. As a measure of performance, we
computed the accuracy of finding the corresponding points
in the neighborhood of one pixel around the points
provided by the test set. In searching for the corresponding
pixel, we examined a band of height seven pixels and width
equal to the image dimension centered at the row
coordinate of the pixel provided by the test set. In this
application, we used a template size of n = 25,1i.e,a 5 x5
window around the central point. For the training sets, we
placed templates around 10 points which were obtained
from the ground truth.

We present the real noise distribution in Fig. 12. As one
can see from Table 3, the Cauchy distribution has the best fit
to the measured distribution. Therefore, one expects the
accuracy to be the greatest when using L. (Table 4). In all
cases (Fig. 13), the results obtained with L, are the worst.
Furthermore, L. has the best accuracy relative to the other
similarity measures for both test sets.

In addition, we investigated the influence of similarity
noise using two promising stereo algorithms and another
stereo pair from the research literature. Our intention was to
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Fig. 17. The accuracy of the stereo matcher for the ROBOTS stereo pair
using multiple window stereo algorithm.

try other distance measures than SSD (which was used in
the original algorithms) in calculating the disparity map.

The first algorithm [8] is an adaptive, multiwindow
scheme using left-right consistency to compute disparity.
For each pixel, the correlation with nine different windows
(Fig. 14) is performed and the disparity with the smallest
SSD (Ls) error value is retained. The authors conclude that
the adaptive, multiwindow scheme clearly outperforms
fixed window schemes. Moreover, the left-right consistency
check proves to be effective in eliminating false matches
and identifying occluded regions.

The second algorithm we implemented and tested was
introduced by Cox et al. [6]. Their algorithm optimizes a
maximum likelihood cost function. This function assumes
that corresponding features in the left and right images are
normally distributed about a common true value and
consists of a weighted squared error term if two features
are matched or a (fixed) cost if a feature is determined to be
occluded. Their interesting idea was to perform matching
on the individual pixel intensity, instead of using an
adaptive window as in the area-based correlation methods.

In order to evaluate the performance of the stereo
matching algorithms under difficult matching conditions,
we also used the Robots stereo pair [21]. This stereo pair is
more difficult due to varying levels of depth and occlusions
(Fig. 15). This fact is illustrated in the shape of the real noise
distribution (Fig. 16). Note that the distribution in this case
has wider spread and is less smooth. For this stereo pair, the
ground truth consists of 1,276 point pairs, given with one
pixel accuracy.

Consider a point in the left image given by the ground
truth. The displacement of the corresponding point position
in the right image is given by the disparity map. The
accuracy is given by the percentage of pixels in the test set
which are matched correctly by the algorithm.
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Fig. 18. The accuracy of the stereo matcher for the ROBOTS stereo pair
using maximum likelihood stereo algorithm.
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TABLE 5
The Accuracy (Percent) of the Stereo Matcher Using
the Multiple Window Stereo Algorithm
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TABLE 6
The Accuracy (Percent) of the Stereo Matcher Using
Maximum Likelihood Stereo Algorithm

Image set Loy In K L. Image set Loy Iy K L.
Castle 92.27 | 92.92 | 92.76 | 94.82 (a=7.47) Castle 93.45 | 94.72 | 94.53 | 95.72 (a=7.47)
Tower 91.79 | 93.67 | 93.14 | 95.28 (a=5.23) Tower 93.18 | 95.07 | 94.74 | 96.18 (a=b.23)

ROBOTS | 72.15 | 73.74 | 75.87 | 77.69 (a=26.2) ROBOTS | 74.81 | 76.76 | 78.15 | 82.51 (a=26.2)

Figs. 17 and 18 show the accuracy of the algorithms
when different distance measures were used. Regarding the
multiple window algorithm, the usage of L. provided an
improvement in accuracy of about 4 percent compared with
L and 6 percent compared with L,. For the algorithm by
Cox et al, using L. instead of L, gave an 8 percent
improvement in accuracy and 6 percent compared with L.
The Kullback relative information had higher accuracy than
L1 and LQ.

In Tables 5 and 6, the results using different distance
measures are presented. For all of the stereo sets, L. had the
highest accuracy and L, had the lowest. Note that the
accuracy was lower using the ROBOTS stereo pair, showing
that, in this case, the matching conditions were more
difficult.

6 SIMILARITY NOISE IN MOTION TRACKING

We used a video sequence containing 19 images on a talking
head in a static background [30]. An example of three images
from this video sequence is given in Fig. 19. For each image in
this video sequence, there are 14 points given as ground truth.
The motion tracking algorithm between the test frame and
another frame performed template matching to find the best
matchinab x 5 template around a central pixel. In searching
for the corresponding pixel, we examined a region of width
and height of seven pixels centered at the position of the pixel
in the test frame.

The idea of this experiment was to trace moving facial
expressions. Therefore, the ground truth points were
provided around the lips and eyes, which are moving
through the sequence. This movement causes the templates
around the ground truth points to differ more when far-off
frames are considered. This is illustrated in Fig. 20.

Between the first frame and a later frame, the tracking
error represents the average displacement (in pixels)

between the ground truth and the corresponding pixels
found by the matching algorithm. Note that, regardless of
the frame difference, L. had the least error and L, had the
greatest error.

In Fig. 21, we display the fit between the real noise
distribution and the three distributions. The real noise
distribution was calculated using templates around points
in the training set (six points for each frame) considering
sequential frames. The best fit is the Cauchy distribution,
and the Exponential distribution is a better match than the
Gaussian distribution. Therefore, it is expected that the
accuracy is greater when using L. than when using L; and
L, (Table 7). For L., the greatest accuracy was obtained
around the values of the parameter a which gave the best fit
between the Cauchy distribution and the real distribution
(Fig. 22).

In addition, we considered the situation of motion
tracking between nonadjacent frames. In Table 7, the results
are shown for tracking pixels between frames located at
interframe distances of 1, 3, and 5. Note that, as the
interframe distance increases, the accuracy decreases and
the error increases (Fig. 20). Overall, L. gave better results
as compared with the other distance measures.

7 CONCLUSIONS AND DISCUSSION

In summary, we examined three topic areas from computer
vision which were content-based retrieval, stereo matching,
and motion tracking. Regarding content-based retrieval, the
first application we examined was finding copies of
historical images which had suffered different handling
and storage conditions. Previous research had shown that
row and column projections were an effective method for
copy location. The second application was finding copies of
images which had been printed and then scanned. For this
application, we used the Corel stock photo database and a

Fig. 19. Video sequence of a talking head.
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Frame

Fig. 20. Average tracking error of corresponding points in successive
frames; for L., a = 2.03.

color histogram method for finding the copies. The third
application dealt with object recognition using color
invariance. Both the ground truth and the algorithm came
from the work by Gevers and Smeulders [9]. Note that, in
their work, they used the SAD metric.

The second topic area we examined was stereo matching.
We implemented a template matching algorithm, an
adaptive, multiwindow algorithm by Fusiello et al. [8],
and a maximum likelihood method using pixel intensities
by Cox et al. [6]. Note that the SSD was used in the work by
Fusiello et al. [8] and in the work by Cox et al. [6].

Motion tracking was the third topic area. In these
experiments, we implemented a template matching algo-
rithm to track pixels on a moving object in a video sequence.
We examined the tracking error and accuracy between
adjacent and nonadjacent frames.

For all of the topic areas and applications in our
experiments, better accuracy was obtained when the
Cauchy metric was substituted for the SSD, SAD, or
Kullback relative information. Minimizing the Cauchy
metric is optimal with respect to maximizing the likelihood
of the difference between image elements when the real
noise distribution is equivalent to a Cauchy distribution.
Therefore, the breaking points occur when there is no
ground truth, the ground truth is not representative, or
when the real noise distribution is not a Cauchy distribu-
tion. Also, we make the assumption that one can measure

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 22, NO. 10, OCTOBER 2000

the fit between the real distribution and a model distribu-
tion and that the model distribution which has the best fit
should be selected. We used the Chi-square test as the
measure of fit between the distributions and found in our
experiments that it served as a reliable indicator for
distribution selection.

The first problem addressed in this paper is whether the
SSD is appropriate to use for computer vision applications
in content-based retrieval, stereo matching, and motion
tracking. From our experiments, the SSD is typically not
justified because the real noise distribution is not Gaussian.

There appear to be two methods of applying maximum
likelihood toward improving the accuracy of matching
algorithms. The first method recommends altering the
images so that the measured noise distribution is closer to
the Gaussian and then using the SSD. The second method is
to find a metric which has a distribution close to the real
noise distribution. Our experiments suggest that real noise
distributions can be modeled using the Cauchy distribution
better than with the Gaussian or Exponential. Furthermore,
the Kullback relative information also appears to be more
accurate in our experiments than the SSD, but not as
accurate as the Cauchy metric. Either method has the
potential to improve the accuracy of a wide range of vision
algorithms (such as content-based retrieval, stereo match-
ing, and motion tracking).

Therefore, our main contributions are in showing that
the prevalent Gaussian distribution assumption is often
invalid and in proposing the Cauchy metric as an
alternative to both the SAD and Kullback relative informa-
tion. Furthermore, in the case where representative ground
truth can be obtained for an application, we provide a
method for selecting the appropriate metric. Overall, it is
our recommendation that one should determine whether
the model distribution fits the real distribution before using
the metric.

In future work, we intend to examine the influence of
multiparameter distributions toward achieving a better fit
to the real distribution.
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Fig. 21. Real noise distribution in the video sequence modeled by three theoretical distributions using sequential frames (the approximation error is
(a) Gauss 0.083, (b) Exponential 0.069, and (c) Cauchy (a = 2.03) and 0.063).

TABLE 7
The Accuracy (Percent) of the Matching Process in Video Sequence

Interframe Distance Ly Ly K L.
1 84.11 | 84.91 | 85.74 | 87.43 (a=2.03)
3 74.23 | 75.36 | 76.03 | 78.15 (a=13.45)
5 65.98 | 67.79 | 68.56 | 70.14 (a=21.15)
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Fig. 22. The accuracy of the matching process in video sequence using
sequential frames.
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