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Abstract

Textures are one of the basic features in visual searching
and computational vision. In the literature, most of the atten-
tion has been focussed on the texture features with minimal
consideration of the noise models. In this paper we inves-
tigated the problem of texture classification from a maximum
likelihood perspective. We took into account the texture model,
the noise distribution, and the inter-dependence of the texture
features. Our investigation showed that the real noise distribu-
tion is closer to an Exponential than a Gaussian distribution,
and that the L1 metric has a better retrieval rate than L2. We
also proposed the Cauchy metric as an alternative for both the
L1 and L2 metrics. Furthermore, we provided a direct method
for deriving an optimal distortion measure from the real noise
distribution, which experimentally provides consistently im-
proved results over the other metrics. We conclude with results
and discussions on an international texture database.

1. Introduction
Texture analysis is important in many applications of com-

puter image analysis for classification, detection or segmenta-
tion of images based on local spatial patterns of intensity or
color. Textures are replications, symmetries and combinations
of various basic patterns or local functions, usually with some
random variation. Textures have the implicit strength that they
are based on intuitive notions of visual similarity. This means
that they are particularly useful for searching visual databases
and other human computer interaction applications. However,
since the notion of texture is tied to the human semantic mean-
ing, computational descriptions have been broad, vague and
sometimes conflicting.

The method of texture analysis chosen for feature extraction
is critical to the success of the texture classification. However,
the metric used in comparing the feature vectors is also clearly
critical. Many methods have been proposed to extract tex-
ture features either directly from the image statistics, e.g. co-
occurrence matrix, or from the spatial frequency domain [13].
Ohanian and Dubes [8] studied the performance of four types
of features: Markov Random Fields parameters, Gabor multi-
channel features, fractal-based features and co-occurrence fea-
tures. Comparative studies to evaluate the performance of
some texture measures were made in [10], [9]. Recently there
has been a strong push to develop multiscale approaches to
the texture problem. Smith and Chang [12] used the statistics
(mean and variance) extracted from the wavelet subbands as
the texture representation. To explore the middle-band charac-
teristics, tree-structured wavelet transform was used by Chang

and Kuo in [2]. Ma and Manjunath [7] evaluated the tex-
ture image annotation by various wavelet transform representa-
tions, including orthogonal and bi-orthogonal, tree-structured
wavelet transform, and Gabor wavelet transform (GWT). They
found out that Gabor transform was the best among the tested
candidates, which matched the human vision study results [1].

Most of these previous studies have focussed on the fea-
tures, but not on the metric, nor on modeling the noise distri-
bution. In this paper, we study the effect of the noise and the
metric and their interrelationship within the maximum likeli-
hood paradigm, using Gabor and wavelet features.

1.1. Texture Features
Gabor filters produce spatial-frequency decompositions that

achieve the theoretical lower bound of the uncertainty princi-
ple. They attain maximum joint resolution in space and spatial-
frequency bounded by the relations ∆2
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olution in spatial-frequency. In addition to good performances
in texture discrimination and segmentation, the justification for
Gabor filters is also supported through psychophysical experi-
ments. Texture analyzers implemented using 2-D Gabor func-
tions produce a strong correlation with actual human segmen-
tation [11]. Furthermore, the receptive visual field profiles are
adequately modeled by 2-D Gabor filters [3].

Gabor functions are Gaussians modulated by complex sinu-
soids. In two dimensions they take the form [3]:
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The Gabor filter masks can be considered as orientation and
scale tunable edge and line detectors. The statistics of these
microfeatures in a given region can be used to characterize the
underlying texture information. A class of such self similar
functions referred to as Gabor wavelets is discussed in [6]. This
self-similar filter dictionary can be obtained by appropriate di-
lations and rotations of g�x�y� through the generating function,

gmn�x�y� � a�mg�x��y��� m � 0�1� � � � �S�1 (2)

x� � a�m�xcosθ� ysin θ�� y� � a�m��x sinθ� ycos θ�

where θ � nπ�K, K the number of orientations, S the num-
ber of scales in the multiresolution decomposition, and a �
�Uh�Ul�

�1��S�1� with Ul and Uh the lower and the upper center
frequencies of interest.

An alternative to gain in the trade-off between space and
spatial-frequency resolution without using Gabor functions is
with a wavelet filter bank. A two-band quadrature mirror filter
(QMF) bank utilizes orthogonal analysis filters to decompose
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Figure 1. Texture classifier for Brodatz textures samples using QMF-wavelets based features

data into low-pass and high-pass frequency bands. Applying
the filters recursively to the lower frequency bands produces
wavelet decomposition as illustrated in Figure 1.

1.2. Texture Classification
The wavelet transformation involves filtering and subsam-

pling. A compact representation needs to be derived in the
transform domain for classification and retrieval. The mean
and the variance of the energy distribution of the transform
coefficients for each subband at each decomposition level are
used to construct the feature vector (Figure 1). Let the im-
age subband be Wn�x�y�, with n denoting the specific subband.
Note that in the case of GWT the index n is regarded as mn
with m indicating a certain scale and n a certain orientation.
The resulting feature vector f � fµn�σng with,
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Z
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Consider two image patterns i and j and let f�i� and f � j� rep-
resent the corresponding feature vectors. The distance between
the two patterns in the features space is:
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where α�µn� and α�σn� are the standard deviations of the re-
spective features over the entire database and Lk is a notation
for all possible metrics that can be used, e.g. L1, L2, Lc.

2. Maximum likelihood approach
Suppose we extract N pair sample blocks from the textures

in the database. Consider xi and yi, i � 1� � � � �N the feature vec-
tors of two samples extracted from the same texture M. Con-
sidering ni as the ”noise” vector obtained as the absolute dif-
ference between corresponding elements in xi and yi, namely
ni � jxi � yij, the similarity probability can be defined:

P�X �Y � �
N

∏
i�1

fexp��ρ�ni��g (6)

where ρ is the negative logarithm of the probability density of
the noise and X and Y are the sets of all feature vectors xi and
yi extracted from the same texture.

According to (6) we have to find the probability density
function of the noise that maximizes the similarity probabil-
ity: maximum likelihood estimate for the noise distribution [4].
Taking the logarithm of (6) we have to minimize the expres-
sion: N

∑
i�1

ρ�ni� (7)

Note that when the Exponential and Gaussian distributions
are used in (7), we arrive at the L1 and L2 metrics, respec-
tively. A distribution with more extensive tails is the Cauchy
distribution, and the corresponding metric Lc is given by the
expression:

Lc�X �Y � �
N

∑
i�1

log�a2 ��xi � yi�
2� (8)

where a is a parameter which determines the height and the
tails of the distribution. For a general noise distribution, con-
sidering ρ as the negative logarithm of the probability density
of the noise, the corresponding metric is given by (7). In prac-
tice, the probability density of the noise can be estimated from
the normalized histogram of the absolute differences.

3. Experiments
The textures used in the experiments are the 112 Brodatz

textures. The database was formed by randomly subsampling
20 samples of 128� 128 pixels in size from the 112 original
textures, resulting in a classification in 112 different classes of
2240 random samples.

The setup of our experiments was the following. First the
ground truth was known since the samples were extracted from
the texture classes. The ground truth was split into two non-
overlapping sets: the training set and the test set. In our ex-
periments the training set consisted of 1000 samples from the
ground truth. Second, for each sample in the training set a fea-
ture vector was extracted using the scheme in Figure 1. Note
that in this experiments, the feature vector was composed from
two independent features: the mean and the variance. For each
of them the real noise distribution was estimated as the nor-
malized histogram of the absolute difference of corresponding
elements from the feature vectors in the training set. The Gaus-
sian, Exponential and Cauchy distributions were fitted to each
real noise distributions using the Chi-square test. We selected
the model distribution which had the best fit and its correspond-
ing metric (Lk) (see (5)) was used in ranking. The ranking was
done using only the test set. It is important to note that for
real applications, the parameter in the Cauchy distribution was
found when fitting this distribution to the real distribution from
the training set. This parameter setting was used for the test set
and any further comparisons in the application.

As noted in Section 2 it is also possible to create a metric
based on real noise distribution using maximum likelihood the-
ory. Consequently, we denoted the maximum likelihood (ML)
metric as (7) where ρ is the negative logarithm of the prob-
ability density function of the noise, approximated as the nor-
malized histogram of the absolute differences from the training
set. Note that there were two ML metrics calculated, one from
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Figure 2. Noise distribution for mean feature in QMF-wavelets compared with the best fit Gaussian (a) (approximation error is
0.279), best fit Exponential (b) (approximation error is 0.207) and best fit Cauchy (c) (approximation error is 0.174)
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Figure 3. Noise distribution for variance feature in QMF-wavelets compared with the best fit Gaussian (a) (approximation error
is 0.036), best fit Exponential (b) (approximation error is 0.0255) and best fit Cauchy (c) (approximation error is 0.023)

the mean distribution and the other one from the variance dis-
tribution. It is also interesting to note that metric values were
already normalized through the histogram so the normalization
factors in (5) (the standard deviations) were not necessary.

We applied the theoretical results described in Section 2
in two experiments. First we determined the influence of the
similarity noise model for texture classification using QMF-
wavelets. Second, we investigated the Gabor wavelet transform
applied to texture classification.

Recall that our database was composed by randomly ex-
tracting 20 subsamples from the 112 original textures. When
doing classification, in the ideal case all the top 19 retrievals
were from the same large image. The performance was mea-
sured in term of the average retrieval rate defined as the
percentage of retrieving the 19 correct patterns when top n
matches were considered.

3.1. Similarity Noise for QMF-wavelet transform
A QMF wavelet filter bank was used for texture classifica-

tion by Kundu [5]. The authors identified several properties of
the QMF filter bank as being relevant to texture analysis: or-
thogonality and completeness of basic functions, filter outputs
that are spatially localized and the reduction of complexity af-
forded by decimation of filter outputs. In our implementation
we used five levels of decomposition of the wavelet transform.
We extracted the mean and the variance of each subband in a
32 (16 subbands � 2) dimensional feature vector.

As noted before, we had to compute two similarity noise
distributions corresponding to mean and variance features. The
similarity noise distributions were displayed in Figure 2 and 3.
The similarity noise distribution was obtained as the normal-
ized histogram of differences between the corresponding fea-
ture elements from the training set.

For both features, the Exponential had a better fit to the
noise distribution than the Gaussian. Consequently, this im-
plies that L1 should have a better retrieval rate than L2. The

Cauchy distribution was the best fit overall and the results ob-
tained with Lc reflect this. Figure 4 presents the average re-
trieval rate for the correct patterns when top n matches are con-
sidered. This results are also contained in Table 1. Note that
using ML we obtained the best average retrieval.
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Figure 4. Average retrieval rate using QMF-wavelets

Top 5 10 25 50
L2 62.43 68.86 78.83 85.14
L1 72.36 76.34 81.41 89.62
Lc 76.32 79.15 83.67 90.18
ML 80.06 83.58 88.66 94.24

Table 1. Comparison of retrieval performance using
QMF-wavelets for different metrics

3.2. Similarity Noise for Gabor Wavelet Transform
A Gabor wavelet transform (GWT) enables us to obtain im-

age representations which are locally normalized in intensity
and decomposed in spatial frequency and orientation. It thus
provides a mechanism for obtaining (1) invariance under in-
tensity transformations, (2) selectivity in scale by providing a
pyramid representation and (3) it permits investigation of the
local oriented features. In this paper, for the non-orthogonal
Gabor wavelet transform we used 4 scales (S=4) and 6 orienta-
tions/scale (K � 6).



The mean and the variance of the energy distribution of the
transform coefficients for each subband at each decomposition
level were used to construct a 48 (6�4�2) dimensional feature
vector. We calculated the similarity noise distribution for both
features and fitted them with the model distributions. As seen
from Table 2, the Cauchy distribution was the best match for
the measured noise distribution. The Exponential was a better
match than the Gaussian.

Feature Gauss Exponential Cauchy
Mean 0.186 0.128 0.114

Variance 0.049 0.035 0.027

Table 2. The approximation error for the noise distribu-
tion using GWT

Figure 5 presents the average retrieval rate when different
metrics were used. Note that Lc had better retrieval rate than
L1 and L2. ML provided the best results.

In summary, Lc performed better than the analytic distance
measures, and the ML metric performed best overall. Note that
the results obtained with GWT were superior to the ones ob-
tained using QMF-wavelet transform.

4. Discussion and Conclusions
This research is differentiated from the previous works in

texture classification in that we had investigated the role of the
underlying noise distribution and corresponding metric in the
paradigm of maximum likelihood. Our experiments on both
the noise distribution and the retrieval rates from using a par-
ticular distortion measure provided strong evidence of the max-
imum likelihood theory.

In the maximum likelihood paradigm, it is provable that
the Gaussian distribution results in the L2 metric, the Expo-
nential distribution results in the L1 metric, and the Cauchy
distribution results in the Lc metric. By linking the distribu-
tions with the metrics, we can directly show why a particular
metric would outperform another metric. Specifically, the met-
ric which will have the best retrieval rate should be the metric
whose distribution best matches the real noise distribution from
the test set.

Here in this paper, we have found that the noise distribution
is modeled better by the Cauchy distribution than the Exponen-
tial or Gaussian distributions. Consequently, among the ana-
lytic distortion measures, Lc consistently had a better retrieval
rate than L1 or L2.

Given that the modeling of the real noise distribution is
linked with the retrieval rate, the next logical question is,
”What is the retrieval rate when we directly model the real
noise distribution?” It was also validated that the highest re-
trieval rate occurs when we use an approximate, quantized
model for the real noise distribution. The corresponding dis-
tortion measure clearly outperformed the rest of the distortion
measures.

Minimizing the ML metric is optimal with respect to max-
imizing the likelihood of the difference between feature ele-
ments when the real noise distribution is representative. There-

fore, the breaking points occur when there is no ground truth,
or when the ground truth is not representative.

Thus, the primary contribution of this paper is the theoret-
ical link between the noise distribution and the corresponding
distortion measure. In this context, we showed that prevalent
Gaussian distribution assumption is often invalid and proposed
the Cauchy metric as an alternative for both the L1 and L2 met-
rics. Furthermore, we provided a method for deriving an opti-
mal distortion measure from the real noise distribution, which
experimentally provided consistently improved results over the
other metrics.
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